期刊文献+

基于神经网络的多电源配电网故障定位 被引量:1

Fault Location of Multi-sources Power Distribution Network Based on Neural Network
下载PDF
导出
摘要 风光类分布式电源的接入使得配电网的故障定位问题由单电源模式变为多电源模式。为了研究多电源配电网的故障定位,研究了应用神经网络进行电源配电网故障定位的可行性。通过训练样本对神经网络进行训练,实现了故障过电流信息到故障区域的映射。算例的结果证明应用神经网络求解多电源配电网故障区域是可行的,具有一定的理论指导意义。 The fault location problem of power distribution network changes from single to multilateral model. This paper studies the feasibility of application of neural network for power distribution network fault location to research the fault location of muff-sources power distribution network. The mapping from fault current information to faulty section was implemented by the neural network weight training guided by training sample. The results of example prove that it is feasible to find the faulty section in muti-sources power distribution network using neural network, and this method has a certain theoretical guiding significance.
出处 《煤矿机械》 北大核心 2014年第2期239-240,共2页 Coal Mine Machinery
关键词 多源模式 神经网络 故障定位 multi-sources model neural network fault location
  • 相关文献

参考文献5

二级参考文献19

共引文献38

同被引文献14

引证文献1

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部