期刊文献+

基于遗传算法的微电网负荷优化分配 被引量:18

Power Economic Dispatch of Microgrid Based on Genetic Algorithm
原文传递
导出
摘要 负荷优化分配是电力系统中的一类重要优化问题,即在满足各类系统约束条件下,实现发电总成本最低。为了促进微电网的优化运行,本文研究了包含柴油发电机、微型燃气轮机、光伏发电机和风力发电机组成的微电网的负荷优化分配问题。首先简要分析了各个微电源的发电特征和成本函数,然后分别建立了孤岛模式和并网模式下的微电网负荷优化分配模型,孤岛模式下优化模型的目标函数是包含燃料成本和运行维护成本的总成本,约束条件包括发电能力约束和系统功率平衡约束,并网模式下的优化模型则在此基础上,在目标函数中增加了其与大电网交易的收入和支出,在约束条件中增加了电力交易约束。最后,通过遗传算法分别对两种模式下的优化模型进行仿真求解。结果表明,本文提出的负荷优化分配方法可以有效降低微电网的运行成本,促进微电网的优化运行。 Power economic dispatch is an important kind of optimization problem in the power systems, that is, achieving the lowest tatal cost of power generation while meet many kinds of system constraints. In order to promote the optimal operation of microgrid, the power economic dispatch problem is studied in this paper of the microgrid with diesel generator, microturbine, photovoltaic power generator and wind turbine. At first, the generation characteristics and cost functions of the micro power generators are ana- lyzed. Then the power economic dispatch models under islanded mode and grid-connected mode are con- structed respectively. The objective function of the optimization model under islanded mode is the total costs which include the fuel costs and operation maintance costs, and the constraint conditions include the constraint of power generation and the constraint of system power balance. While the income and expenses of the transaction between microgrid and the large power grids are added to the objective function of the optimization model under grid--connected model based on the model under islanded mode, and the electric- ity transaction constraint are added to the constraint conditions. Finally, the optimization models under both modes are solved by genetic algorithm. The results show that the power economic dispatch method proposed in this paper can effectively reduce the operating costs and promote the optimal operation of mi- crogrid.
出处 《中国管理科学》 CSSCI 北大核心 2014年第3期68-73,共6页 Chinese Journal of Management Science
基金 国家高技术研究发展计划(863)(2011AA05A116) 国家自然科学基金资助项目(71131002 71201042)
关键词 负荷优化分配 优化模型 遗传算法 微电网 economic load dispatch optimization models genetic algorithm microgrid
  • 相关文献

参考文献16

  • 1朱继忠,徐国禹.用网流法求解电力系统动态经济调度[J].系统工程学报,1991,6(1):33-40. 被引量:1
  • 2朱继忠,徐国禹.用网流法求解水火电力系统有功负荷分配[J].系统工程理论与实践,1995,15(1):69-73. 被引量:2
  • 3Basu M. Bee colony optimization for combined heat and power economic dispatch[J]. Expert Systems with Ap- plications, 2011,38(11) : 13527- 13531.
  • 4Kavrakoglu K, Kiziltan G. Multiobjective strategies in power systems planning[J]. European Journal of Opera- tional Researeh, 1983,12 (2) : 159- 170.
  • 5Makkonen S, Lahdelma R. Non-eonvex power plant modelling in energy optimization[J]. European Journal of Operational Research,2006,171 (3) : 1113 - 1126.
  • 6Gardner D T, Rogers J S. Joint planning of combined heat and power and electricpower systems: An efficient model formulation[J]. European Journal of Operational Research, 1997,102 (1) : 58- 72.
  • 7Nowak M P, R6misch W. Stochastic lagrangian relaxa- tion applied to power scheduling in a hydro-thermal sys- tem under uncertainty [J]. Annals of Operations Re- search, 2000,100(1- 4) : 251 - 272.
  • 8Thompson M,Davison M, Rasmussen H. Valuation and optimal operation of electric power plants in competitive markets[J]. Operations Research, 2004,52 (4) : 546 - 562.
  • 9Li F. A comparison of genetic algorilhms with conven- tional techniques on aspectrum of powere conomie dis- patch problems[J]. Expert Systems with Applications, 1998,15(2) : 133- 142.
  • 10Li F,Aggarwal R K. Fast and accurate power dispatch using a relaxed genetical gorithm and a local gradient technique[J]. Expert Systems with Applications,2000, 19(3) :159-165.

二级参考文献17

  • 1孙日东,1987年
  • 2Climaco J.,C.H.,Martins A.G.,er al.A multiple objective linear programming model for power generation expansion planning[J].International Journal of Energy Research,1995,19(5):419-432.
  • 3Antunes C.,Martins A.,Gomes,et al.A multiple objective mixed integer linear programming model for power generation expansion planning[J].Energy,2004,29(4):613-627.
  • 4Jia N.,Yokoyama R.,Zhou Y.,et al.Optimal generation expansion planning under the deregulated market based on an improved DP approach[C].Power Plants and Power Systems Control 2000,Proceedings volume from the IFAC Symposium,2000,251-255.
  • 5Chung T.S.,Li Y.Z.,Wang Z.Y..Optimal generation expansion planning via improved genetic algorithm approach[J].International Journal of Electrical Power and Energy System,2004,26(8):655-659.
  • 6Kannan S.,Slochanal S.,Mary Raja,et al.Application of particle swarm optimization technique and its variants to generation expansion planning problem[J].Electric Power Systems Research,2004,70(3):203-210.
  • 7Tsukada T.,Tamura T.,Kitagawa S.,et al.Optimal operational planning for cogeneration system using particle swarm optimization[C].Proceedings of the 2003 IEEE Swarm Intelligence Symposium.SIS' 03 (Cat.No.03EX706),2003,138-43.
  • 8Sevilgen S.H.,Erdem H.H.,Cetin B..et al.Effect of economic parameters on power generation expansion planning[J].Energy Conversion and Management,2005,46(11):1780-1789.
  • 9黄席樾,胡小兵,何传江,等.现代智能算法理论与应用[M].北京:科学出版社,2004.
  • 10Kennedy J.,Eberhart R.C..Particle swarm optimization.IEEE.Proceedings of The 6th conference on neural networks[C].NJ Piscataway:IEEE Service center,1995:1942-1948.

共引文献6

同被引文献147

引证文献18

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部