期刊文献+

中国房价构成与预测的仿真分析 被引量:7

Simulation Analysis of China's Housing Prices Constitution and Prediction
下载PDF
导出
摘要 研究房价准确预测问题,结合近年来国内房价易涨难跌、难以调控的问题,提出利用回归分析和BP神经网络的相关知识,建立了房价构成与预测模型。首先,分析房价构成因素,通过多元线性回归分析方法建立房价构成模型,并通过仿真得到了影响房价的主要因素,在此基础上,利用BP神经网络构建房价预测模型;根据历史统计数据分别预测07、08、09连续三年的房价,并将其与实际值进行比对验证仿真模型的可靠性及有效性。最后,结合2009年的数据参数,分别分析各个主要因素如何对房价产生影响,仿真结果表明,为房价的准确预测提供了依据。 Recently, domestic housing prices feel hard to down in a short term and is difficult to regulate. Consid- ering that, this paper constructed a constitution and prediction model of housing price, basing on Regression Analysis and Back Propagation Network. First of all, we analyzed the factors that influence housing prices and then used Mul- tiple Regression Analysis method to construct a constitution model. From that model, we can achieve the most essen- tial factors of all. On the basis of those factors, we used the knowledge of BP Network to construct a prediction mod- el. Using that model, we predicted the housing prices of year 2007, 2008, 2009 and validated the model by compa- ring them with the practical data. At last, we studied how the most essential factors influence the housing price sepa- rately, trying to dig out the underlying reasons behind the incredible price.
出处 《计算机仿真》 CSCD 北大核心 2014年第3期230-238,共9页 Computer Simulation
关键词 房价构成与预测模型 回归分析 神经网络 Housing price constitution and prediction Multiple regression analysis BP network
  • 相关文献

参考文献5

二级参考文献27

共引文献436

同被引文献57

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部