期刊文献+

基于稀疏核主成分分析的语音情感识别研究 被引量:1

Speech Emotion Recognition Based on Sparse Kernel Principal Component Analysis
下载PDF
导出
摘要 为提升语音情感识别的能力,本研究提出一种基于稀疏核主成分分析(Sparse Kernel Principal Component Analysis,SKPCA)的方法。该方法结合核主成分分析以及稀疏表示的方法,能够同时满足特征降维和样本稀疏,起到降维和降噪的作用。本研究首先利用openSMILE工具包提取情感语音样本的声学特征及其统计特征用于情感识别,然后介绍SKPCA的算法原理及推导过程,最后使用多种分类器在柏林库做了大量的实验,实验结果表明,使用SKPCA方法可取得较好的识别结果。 In order to enhance the ability of speech emotion recognition, this paper proposes a method based on sparse kernel principal component analysis(SKPCA). This method combines the kernel principal component analysis and sparse representation, which can satisfy both dimension reduction and sample sparse to reduce the feature dimension and noise. First, the acoustic features and their statistical features of emotional speech samples are extracted by the openS- MILE toolkit for emotion recognition. Then the algorithm and the derivation process of SKI^A are introduced. Finally a lot of experiments are carried out in the Berlin database using multiple classifiers. The experimental results showed that the use of SKPCA method achieved better recognition results.
出处 《信息化研究》 2014年第1期36-39,共4页 INFORMATIZATION RESEARCH
关键词 语音情感 情感识别 特征降维 稀疏核主成分分析 speech emotion emotion recognition feature selection sparse kernel principal component analysis(SKPCA)
  • 相关文献

参考文献13

  • 1Burkhardt F, Paeschke A, Rolfes M, et al. A database ofgerman emotiorml speechEC3//Proceedings of interspeech 2005. Portu- gal: Lizbon, 2005 : 1517 - 1520.
  • 2Engberg I S, Hansen A V. Center forperson kommunikation: Documentation of the danish emotional speech database(DES) [R].Denmark:Intemal AAU report,1996.
  • 3Martin O,Kotsia I, Macq B, et al. The eNTERFACE'05 audio- visual emotion database[C]//IEEE international conference on data engineering workshops. Atlanta GA USA.. IEEE, 2006: 1-8.
  • 4Steidl S. Autornaticclassification of emotion-related user states in spontaneous children's speech[D]. Berlin, Germany: Logos- Verlag, 2009.
  • 5Schuller B, Rigoll G, Lang M. Hiddenmarkov model-based speech emotion reeognition[C]//Acoustics speech and signal processing 2003 (ICASSP'03). USA: 2003 IEEE international conference on, 2003 : 401 - 405.
  • 6Nicholson J, Takahashi K, Nakatsu R. Emotion recognition in speech using neural networks[J]. Neuralcomputing & applica- tions, 2000,9(4) :290- 296.
  • 7Chavhan Y, Dhore M L, Yesaware P. Speech emotion recogni- tion using support vector maehine[J]. Internationaljournal of computer applications, 2010,1 (20) : 6 - 9.
  • 8Scholkopf B, Smola A, Muller K R. Nonlinear component analy- sis as a kernel eigenvalue problem[J]. Neural computation, 1998, 10(5) :1299 - 1319.
  • 9Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kemels[C]//Proceedings of the 1999 IEEEsignal process- ing society workshop. USA: Neural networks for signal pro- cessing IX, 1999 : 41 - 48.
  • 10Perez-Cruz F, Bousquet O. Kernel methods and their potential use in signal processing[J]. Signal processing magazine, 2004, 21(3) ..57 - 65.

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部