摘要
针对传统的协同过滤算法存在用户冷启动、对位置变化不敏感等问题,我们提出了一套较为完善的应用于移动商务的基于LBS(Location Based Service)的个性化推荐算法。本算法利用了位置感知和经典的协同过滤算法,引入距离变量借鉴多属性决策理论得出较为完善的推荐列表。实验证明本算法具有较强可行性。
As the traditional collaborative filtering algorithm has the problems of user cold starting, insensitiveness to the change of position and so on, we propose a set of personalized recommendation algorithms based on LBS(Location Based Service) applying in mobile commerce. The algorithm makes use of location aware and the collaborative filtering algorithm, drawing into the distance variable to get the more perfect recommended list. Experimental results show that the algorithm has good feasibility.
出处
《电脑与电信》
2014年第1期30-32,共3页
Computer & Telecommunication
基金
浙江省大学生科技创新活动计划(新苗人才计划)
基金编号:2013R425024
关键词
LBS
协同过滤
多属性决策
个性化推荐
LBS
LBS
collaborative filtering
multiple attribute decision making
individual recommendation