期刊文献+

基于IDRA法的直升机动力学建模 被引量:4

Dynamics modeling for helicopter based on IDRA approach
原文传递
导出
摘要 为加快直升机动力学模型的解算速度,基于拉格朗日方程,以一个仿真步长内机身的微小位移和转角(IDRA)为广义坐标,提出了直升机动力学建模的IDRA法,简化了相邻步长间机体坐标系的转化矩阵,节省了CPU计算时间.同时,将直升机轮胎视为带有黏性阻尼的三维线性弹簧,将其势能、动能和耗散能用新的广义坐标表示,建立了集飞行与着陆于一身的机身动力学模型.实验结果表明:与传统方法相比,利用IDRA法可以节省1/3的CPU计算时间,飞行与着陆之间曲线过渡合理,从而验证了该方法的可靠性和实时性. In order to speed up the algorithm of helicopter dynamics model,based on Lagrange equa-tion,treating micro displacements and rotating angles of airframe in a simulation step as generalized coordinates ,an IDRA (infinitesimal displacements and rotation angle)approach for helicopter dynam-ics modelling was presented,which simplified transformation matrixes of airframe coordinates be-tween adjacent simulation steps.In this way,the CPU computing time was greatly saved.Mean-while,each tyre of helicopter was viewed as three-dimensional linear springs with viscous dampings, and its potential energy,kinetic energy and energy dissipation of airframe were expressed in the pres-ented generalized coordinates.So,the dynamic model of airframe which involved flight as well as landing was established.Experimental results show that IDRA approach can save 1/3 amount of CPU time that was spent in computing compared with the traditional approach and transition curves be-tween flight and landing are reasonable,which can verify the relilability and real-time of the method.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期98-102,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 吉林省教育厅'十二五'科学技术研究项目(2012505)
关键词 动力学建模 直升机 实时性 拉格朗日方程 飞行 着陆 dynamics modeling helicopter real-time Lagrange equation flight landing
  • 相关文献

参考文献8

  • 1栗英杰,赵丁选,赵颖,侯敬巍,李善锋,杨国君.直升机飞行动力学建模及仿真[J].吉林大学学报(工学版),2011,41(S2):241-245. 被引量:4
  • 2Yavrucuk L, Kubali E, Tarimci O, et al. A low cost flight simulator using virtual reality tools[J]. IEEE Aerospace and Electronic Systems Magazine, 2011, 26(4) : 10-14.
  • 3Vilchis J C A, Brogliato B, Dzule A, et al. Nonlinear modelling and control of helicopter[J]. Automatica, 2003, 39(9): 1583-1596.
  • 4Dzul A, Lozano R, Castillo P. Adaptive control for a radio-controlled helicopter in a vertical flying stand [J]. International Journal of Adaptive Control and Signal Processing, 2004, 18(5): 473-485.
  • 5Salazar-Cruz S, Lozano R, Escareno J. Stabilization and nonlinear control for a novel trirotor mini-aircraft [J]. Control Engineering Practice, 2009, 17 (8): 886-894.
  • 6普劳蒂 R W.直升机性能及稳定性和操纵性[M].北京:航空工业出版社,1990:277-278.
  • 7Gabriel M, Hoffmann, Huang Haomiao, et al. Tom- lin precision flight control for a multi-vehicle quadro- tor helicopter testbed[J]. Control Engineering Prac- tice, 2011, 19(9): 1023-1036.
  • 8Munzinger C. Development of a real-time flight sim- ulator for an experimental model helicopter [D]. Atlanta: School of Aerospace Engineering, Georgia Institute of Technology, 1998.

二级参考文献6

  • 1蒋珉,黄振全,王静.具有最大稳定域的实时RK4公式[J].系统仿真学报,2006,18(2):306-308. 被引量:11
  • 2Pavel Marilena D.Prediction of the necessary de-grees of freedom for helicopter real-time simulationmodels. Journal of Aircraft . 2008
  • 3Voskuijl M,Padfield G D,Walker D J.Simulation ofautomatic helicopter deck landings using nature in-spired flight control. The Aeronautical Journal . 2010
  • 4Zhu Zheng-hong,Larosa Michael,Ma James.Fatiguelife estimation of helicopter landing probe based ondynamic simulation. Journal of Aircraft . 2009
  • 5Palligkinis S C,Papageorgiou G,Famelis I T.Runge-Kutta methods for fuzzy differential equations. Journal of Applied Mathematics . 2009
  • 6Munzinger Christian.Development of a real-timeflight simulator for an experimental model helicop-ter. . 1998

共引文献8

同被引文献26

  • 1栗英杰,赵丁选,赵颖,侯敬巍,李善锋,杨国君.直升机飞行动力学建模及仿真[J].吉林大学学报(工学版),2011,41(S2):241-245. 被引量:4
  • 2于志,赵佳,申功璋.直升机飞行动力学建模及可视化研究[J].计算机仿真,2006,23(12):49-53. 被引量:7
  • 3陈虹丽,李爱军,贾红宇.海浪信号的实时仿真和谱估计[J].电机与控制学报,2007,11(1):93-96. 被引量:8
  • 4普劳蒂 R W.直升机性能及稳定性和操纵性[M].北京:航空工业出版社,1990:277-278.
  • 5Sandino I, A, Bejar M, Kondak K,el al. On the use of tethered configurations for augmenting hovering stability in small - size atttommous helicopters[J]. Jounlal of Intelligent & Robotic Sys- tems, 2013, 70(1): 509-525.
  • 6Yang T T, Li A J. An unmmmed helicopter model identification method based on the immune particle swarm optimization algo- rithm [ J ]. Applied Meehanic.s and Materials, 2013, 347: 3890 - 3893.
  • 7Raptis I, Valavanis K. Linear and Nonlinear Contrul of Small - scale Unmanned Helicopters [ M ]. Berlin: Springer Science & Business Media, 2010.
  • 8Tang S, Zheng Z, Qian S, et ',41. Nonlinear system identification of a small - scale unmanned helicopter[ J ]. Control Engineering Practice, 2014, 25:1 -15.
  • 9Cai G W, Chen B M, Dong X, et al. Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter [ J ]. Mechatronics, 2011, 21 ( 5 ) : 803 - 820.
  • 10Garcia P C, Lozano R, Dzul A E. Modelling and Control of Min- i-flying Machines [ M ]. Berlin: Springer Science & Business Media, 2006.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部