期刊文献+

基于RBF神经网络的全向智能轮椅自适应控制 被引量:5

Adaptive control for omni-directional intelligent wheelchairs based on RBF neural network
原文传递
导出
摘要 在外界扰动为有界不可测条件下,利用径向基函数(radial basis function,RBF)神经网络在线逼近全向智能轮椅的非线性逆运动学模型,提出对轮椅轨迹跟踪的直接自适应控制方法.首先,在分析全向智能轮椅平台动力学模型的基础上,设计了基于径向基函数神经网络的全向智能轮椅自适应控制器;并进一步利用李雅普诺夫稳定性理论,证明了在外界扰动及神经网络权值误差逼近有界的条件下,该控制器在全向智能轮椅轨迹控制中跟踪误差的一致稳定且有界;最后,通过全向智能轮椅轨迹跟踪仿真实验,验证了所提出控制方法的有效性和稳定性. Under the condition that the disturbance was bounded and immeasurable, a direct adaptive control method based on radial basis function (RBF) neural network for omni-directional intelligent wheelchairs was proposed. Firstly, on the basis of analyzing inverse-dynamic model of intelligent wheelchair platform, an adaptive controller was proposed based on RBF neural network for omni-di- rectional intelligent wheelchair. Furthermore, by using Lyapunov stability theory, it had been proved that the tracking error of this controller was stable and bounded on condition that the disturbance and network weight were bounded during the intelligent wheelchair's control process. Finally, the validity and stability of the proposed method were verified through the simulations of the omni-directional in- telligent wheelchair.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期111-115,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61175087 61105033) 北京市自然科学基金重点资助项目(KZ201110005004)
关键词 神经网络 智能轮椅 自适应控制 径向基函数 稳定性理论 RADIAL BASIS function (RBF) neural network intelligent wheelchair adaptive control radial basis function (RBF) stability theory
  • 相关文献

参考文献2

二级参考文献16

  • 1王飞,罗志增.基于AR模型和BP网络的表面EMG信号模式分类[J].华中科技大学学报(自然科学版),2004,32(S1):100-102. 被引量:5
  • 2张坤,王志中.改进的BP算法在表面肌电信号识别中的应用[J].医疗卫生装备,2005,26(12):17-19. 被引量:5
  • 3孙增圻.智能控制理论与技术[M].北京:清华大学出版社,2000..
  • 4张汝波.强化学习理论及应用[M].哈尔滨:哈尔滨工程大学出版社,2000.
  • 5Sutton R S,Barto A G.Reinforcement learning:An introduction[M].Cambridge:MIT Press,1998.
  • 6Claude F T.Neural reinforcement learning for behaviour synthesis[J].Robotics and Autonomous Systems,1997,22(3/4):251-281.
  • 7Jouffe L.Fuzzy inference system learning by reinforcement methods[J].IEEE Trans on Systems,Man and Cybernetics,1998,28(3):338-355.
  • 8Baird L C.Residual algorithms:Reinforcement learning with function approximation[C].Proc of the 12nd Int Conf on Machine Learning.San Francisco,1995:9-12.
  • 9Watkins C J,Dayan P.Q-learning[J].Machine Learning,1992,8(3):279-292.
  • 10Peng J,Williams R J.Incremental multi-step Q-learning[C].Proc of the 11th Int Conf on Machine Learning.New Brunswick:Morgan Kaufmann,1995:226-232.

共引文献24

同被引文献49

  • 1张文静,台宪青.基于LuGre模型的火炮伺服系统摩擦力矩自适应补偿[J].清华大学学报(自然科学版),2007,47(z2):1756-1760. 被引量:12
  • 2韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88. 被引量:427
  • 3韩敏,穆云峰.一种改进的RAN网络结构优化算法[J].控制与决策,2007,22(10):1177-1180. 被引量:3
  • 4孙洪淋,孙炜,石玉秋,徐航.基于模糊高斯基函数神经网络控制的机器人视觉伺服系统[J].科学技术与工程,2007,7(23):6050-6054. 被引量:1
  • 5WATANABE K,TANG JUN,NAKAMURA M,et al. A fuzz- y-Gaussian Neural Network and Its Application to Mobile Ro- bot Control [J]. Control Systems Technology, IEEE Transac- tions on,1996,4(2) :193-199.
  • 6CHEN YUN,ZHENG WEIXING,XUE ANKE. A New Result on Stability Analysis for Stochastic Neutral Systems [J]. Au- tomatiea,2010,46(12) :2100-2104.
  • 7MON YI JEN, LIN CHIN M1N. Supervisory Fuzzy Gaussian Neural Network Design for Mobile Robot Path Control[J].In- ternational Journal of Fuzzy Systems, 2013,15(2) : 142-148.
  • 8WATANABE K,TANG JLW,NAKAMURA M,et al. Mobile Robot Control Using Fuzzy-gaussian Neural Networks[G]// Intelligent Robots and Systems' 93 ,IROS'93. Proceedings of the 1993 IEEE/RSJ International Conference on. IEEE, 1993: 919-925.
  • 9FAN JINHUI, JIA SONGMIN, LI XIUZHI, et al. Motion Control of Intelligent Wheelchair Based on Sitting Postures [G]//Mechatronics and Automation (ICMA),2011 Interna- tional Conference on. IEEE, 2011 : 301-306.
  • 10Hauschild J P,Heppler G R.Control of harmonic drive motor actuated flexible linkages[C]∥Proc of IEEE International Conference on Robotics and Automation.Piscataway:IEEE,2007:3451-3456.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部