期刊文献+

和声搜索算法探索能力研究及其修正 被引量:24

Exploration ability study of harmony search algorithm and its modification
下载PDF
导出
摘要 和声搜索算法(harmony search,HS)的一大缺点是它容易陷入局部最优.针对此缺点,深入研究了近期文献中所提出的步长(bw)调整方法.首先具体分析了和声搜索算法即兴创作过程的探索能力,而后推导出在不对称区间下即兴创作过程的探索能力与各参数的关系,并进一步讨论了bw对探索能力和算法收敛的影响,证明了方差期望和均值期望所组成的迭代方程的迭代收敛充分性.基于这些分析和证明,提出一种修正和声搜索算法(modified harmony search,MHS),并分析了参数和声记忆库大小(harmony memory size,HMS)、基音调整概率(pitch adjusting rate,PAR)及和声记忆库的考虑概率(harmony memory considering rate,HMCR)对MHS优化性能的影响.数值仿真结果表明MHS算法优于HS及最新文献所报道的8种改进HS算法,具有良好的优化性能. Harmony search (HS) algorithm often generates solutions that are only local optimal. To conquer this disad- vantage, the distance bandwidth adjusting methods that were proposed in recent publications are deeply studied. At first, the exploration ability of HS improvisation is investigated. Secondly, the relationship between improvisation exploration and each parameter under asymmetric interval is deduced. Finally, the effects of the parameter bw on the exploration ability and convergence of HS are discussed, and the iterative convergence sufficiency of the iteration equation which consists of variance expectation and mean expectation is theoretically proven. Based on the above analyses and proof, a modified har- mony search (MHS) algorithm is proposed. The effects of the key parameters HMS, PAR and HMCR on the performance of MHS algorithm are also discussed in detail. Experimental results demonstrated that the proposed MHS algorithm has better performance than HS and the other eight state-of-the-art HS variants that were recently proposed.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第1期57-65,共9页 Control Theory & Applications
基金 国家自然科学基金资助项目(60674021)
关键词 和声搜索算法 步长 探索能力 迭代收敛 harmony search algorithm bandwidth exploration ability iterative convergence
  • 相关文献

参考文献19

  • 1GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic opti- mization algorithm: harmony search [J]. Simulation, 2001, 76(2): 60 - 68.
  • 2MAHDAVI M, FESANGHARY M, DAMANGIR E. An improve harmony search algorithm for solving optimization problems [J]. Ap- plied Mathematics and Computation, 2007; 188(2): 1567 - 1579.
  • 3ALATAS B. Chaotic harmony search algorithms [J]. Applied Mathe- matics and Computation, 2010, 216(9): 2687 - 2699.
  • 4SIVASUBRAMANI S, SWARUP K S. Environmental/economic dis- patch using multi-objective harmony search algorithm [J]. Electrical Power & Energy Systems, 2011, 81(9): 1778 - 1785.
  • 5AYVAZ M T. Application of harmony search algorithm to the so- lution of groundwater management models [J]. Advances in Water Resources, 2009, 32(6): 916 - 924.
  • 6CAIO C O, RAMOS, SOUZA A N, et al. A novel algorithm for feature selection using harmony search and its application for non- technical losses detection [J]. Computers and Electrical Engineering, 2011, 37(6): 886 - 894.
  • 7DAS SHARMA K, CHATTERJEE A, RAKSHIT A. Design of a hy- brid stable adaptive fuzzy controller employing lyapunov theory and harmony search algorithm [J]. IEEE Transactions on Control Systems Technology, 2010, 18(6): 1440 - 1447.
  • 8WONG W K, GUO Z X. A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learn- ing machine and harmony search algorithm [J]. International Journal of Production Economics, 2010, 128(2): 614 - 624.
  • 9高立群,葛延峰,孔芝,邹德旋.自适应和声粒子群搜索算法[J].控制与决策,2010,25(7):1101-1104. 被引量:37
  • 10GEEM Z W, KWEE B S. Parameter-setting-free harmony search al- gorithm [J]. Applied Mathematics and Computation, 2010, 217(8): 3881 - 3889.

二级参考文献8

  • 1Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: Harmony search[J]. Simulation, 2001, 76(2): 60-68.
  • 2Kim J H, Geem Z W, Kim E S. Parameter estimation of the nonlinear Muskingum model using harmony search[J]. J Am Water Resour Assoc, 2001, 37(5): 1131-1138.
  • 3Geem Z W. Optimal cost design of water distribution networks using harmony search[J]. Eng Optimiz, 2006, 38(3): 259-280.
  • 4Kang S L, Geem Z W. A new structural optimization method based on the harmony search algorithm[J]. Comput Struct, 2004, 82(9/10): 781-798.
  • 5Kang S L, Geem Z W. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 3902-3933.
  • 6Geem Z W, Tseng C, Park Y. Harmony search for generalized orienteering problem: best touring in China[J]. Springer Lecture Notes in Computer Science, 2005, 3412: 741-750.
  • 7Kennedy J, Eberhart R. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Press, 1995: 1942-1948.
  • 8Mahdavi M, Fesanghary M, Damangir E. An improved harmony search algorithm for solving optimization problem[J]. Applied Mathematics and Computation, 2007, 188(2): 1567-1579.

共引文献39

同被引文献230

引证文献24

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部