期刊文献+

贝叶斯网络下高速公路交通突发事件态势评估 被引量:1

Assessment of Highway Emergency Situation Based on Bayesian Network
原文传递
导出
摘要 把广泛应用于军事领域的态势评估技术应用到高速公路交通突发事件处理中,对事件态势进行评估,提高应急处置决策的准确性。通过分析高速公路交通突发事件的特性,采用分层贝叶斯网络,采取定性和定量相结合的方法,构建适用于高速公路交通突发事件的态势评估模型,并以河北省为例进行了实例分析。研究表明,该模型能够较为准确地评估突发事件当前状态,具有一定的实用价值。 In this paper, the situation assessment technology which is widely used in military is applied to highway traffic emergency processing to evaluate event situation and improve the accuracy of emergency decision-making. The characteristics of highway traffic emergency is analyzed and method of combining qualitative and quantitative analyses based on hierarchical Bayesian network is adopted to build the model adaptive to assessment of highway traffic emergency situation. Hebei province is taken as the case study, which results show that the model can assess the relatively accurate real situation of emergency and has certain practical value.
出处 《公路》 北大核心 2014年第3期117-124,共8页 Highway
基金 河北省交通运输厅科学技术项目 河北省山区高速公路交通突发事件应急保障体系研究
关键词 贝叶斯网络 高速公路交通突发事件 态势评估 Bayesian networks highway traffic emergency situation assessment
  • 相关文献

参考文献5

二级参考文献54

  • 1曹锐,李宏光,李昊阳.一类混杂系统Petri网模型的优化算法的研究[J].微计算机信息,2005,21(1):27-28. 被引量:27
  • 2Zhang N L, Poole D. A simple approach to Bayesian network computations[C].Proceedings of the Tenth Canadian Con ference on Artifieial Intelligence, 1994 : 171 - 178.
  • 3Dechter R. Bucket elimination: a unifying framework for probabilistic inference[C].Proceedings of the Twelthth Confer ence on Uncertainty in Artificial Intelligence, Portland, Oregon, 1996: 211-219.
  • 4Kask K, Dechter R, Larrosa J, et al. Bucket-tree elimination for automated reasoning [J]. Artificial Intelligence, 2001 (125): 91-131.
  • 5Zhang N L, Poole D. Exploiting causal independence in Bayesian network inference[J]. Journal of Artificial Intelligence Research, 1996(5) : 301 - 328.
  • 6Amestoy P R, Davis T A, Du I S. An approximate minimum degree ordering algorithm[J]. AIAM Journal of Matrix Analysis and Aplications, 1996, 17(4) : 886 - 905.
  • 7Shachter R. Evidence absorption and propagation through evidence reversals [J]. Uncertainty in Artificial Intelligence, 1990(5): 173 - 190.
  • 8Adrian Y W C, Boutilier C. Structured Arc Reversal and Simulation of Dynamic Probabilistic Networks[C].Proceedings of the Thirteenth ConJerence on Uncertainty in AI (UAI-97), 1997.
  • 9Darwiche A. A differential approach to inference in Bayesian networks (Tech. Rep. Nos. D-108)[R]. Los Angeles: Computer Science Department, UCLA, 1999.
  • 10Darwiche A. A differential approach to inference in Bayesian networks[C].Uncertainty in Artificial Intelligence: Proceedings of the Sixteenth Conference, San Francisco:Morgan Kaufmann, 2000.

共引文献87

同被引文献1

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部