期刊文献+

一个获得压水峰良好效果的简单方法 被引量:1

A Simple Method for Clean Water Signal Suppression
下载PDF
导出
摘要 蛋白质NMR中最基本的实验是HSQC实验.在HSQC实验中,水峰压制的主要方法之一是利用一对与异核旋磁比比值相适应的梯度脉冲.该文介绍一种简单易行的方法,只需对这一对脉冲进行适当的延长便能使得水峰几乎完全消失. HSQC experiments are the most basic experiments in protein NMR. In HSQC experiments, water suppression is mainly achieved by a pair of field gradient pulses whose intensity ratio is in accordance with the ratio of the heteronuclear gyromagnetic ratios. In this paper, a simple method is propsed to achieve clean water suppression in HSQC experiments by properly modulating the gradient pulse length.
作者 毛希安
出处 《波谱学杂志》 CAS CSCD 北大核心 2014年第1期1-6,共6页 Chinese Journal of Magnetic Resonance
关键词 HSQC实验 水峰压制 梯度脉冲 延长散相时间 HSQC, water suppression, field gradient pulse, dephasing
  • 相关文献

参考文献7

  • 1Zhang X,Mao X A,Liu M L.Solvent Resonance Suppression Methods in NMR Spectroscopy//Encyclopedia of Spectroscopy & Spectrometry[M].in press.
  • 2Zheng G,Price W S.Solvent signal suppression in NMR[J].Prog NMR Spectr,2010,56:267-288.
  • 3Hurd R E,John B K.Gradient-enhanced proton-detected heteronuclear multiple-quantum coherence spectroscopy[J].J Magn Reson,1990,91:648-653.
  • 4Vuister G W,Boelens R,Kaptein R,et al.Gradient-Enhanced HMQC and HSQC spectroscopy.Applications to 15N labeled Mnt repressor[J].JAm Chem Soc,1991,113:9 688-9 690.
  • 5陈金鸿,毛希安.脉冲梯度场NMR实验中的弛豫和辐射阻尼效应[J].波谱学杂志,1996,13(6):547-555. 被引量:2
  • 6Piotto M,Saudek V,Sklenar V.Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions[J].J Biomol NMR,1992,2:661-665.
  • 7Liu M L,Mao X A,Ye C H,et al.Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy[J].J Magn Reson,1998,132:125 129.

二级参考文献2

  • 1毛希安,Chem Phys Lett,1994年,227卷,658页
  • 2毛希安,J Chem Phys,1993年,99卷,7455页

共引文献1

同被引文献28

  • 1Filippov A, Munavirov B, Grobner G, et al. Lateral diffusion in equimolar mixtures of natural sphingomyelins with dioleoylphosphatidylcholine [J]. Magn Reson Imaging, 2012, 30(3 ): 413 - 421.
  • 2Srnaby J M, Brockman H L, Brown R E. Cholesterol's interfacial interactions with sphingomyelins and phosphatidylcholines: hydrocarbon chain structure determines the magnitude of condensation[J]. Biochemistry, 1994, 33(31): 9 135-9 142.
  • 3Slotte J P. Sphingomyelin-cholesterol interactions in biological and model membranes[J]. Chem Phys Lipids, 1999, 102(1-2): 13-27.
  • 4Ramstedt B, Slotte J P. Interaction of cholesterol with sphingomyelins and acyl-ehain-matched phosphatidylcholines: a comparative study of the effect of the chain length[J]. Biophys J, 1999, 76(2): 908-915.
  • 5Brown D A, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts[J]. J Biol Chem, 2000, 275(23): 17 221 - 17 224.
  • 6Edidin M. The state of lipid rafts: from model membranes to cells[J]. Annu Rev Biophys Biomol Struct, 2003, 32: 257- 283.
  • 7Mayor S, Rao M. Rafts: Scale-dependent, active lipid organization at the cell surface[J]. Traffic, 2004, 5(4): 231 -240.
  • 8Pike L J. Lipid rafts: heterogeneity on the high seas[J]. Biochem J, 2004, 378:281 -292.
  • 9Simons K, Ikonen E. Functional rafts in cell membranes[J]. Nature, 1997, 387(6633): 569-572.
  • 10Niemela P, Hyvonen M T, Vattulainen 1. Structure and dynamics of sphingomyelin bilayer: Insight gained through systematic comparison to phosphatidylcholine[J]. Biophys J, 2004, 87(5): 2 976-2 989.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部