期刊文献+

NMR分析胶质瘤细胞系CHG5和U87的代谢轮廓 被引量:1

Metabolic Profiles of CHG5 and U87 Glioma Cell Lines Derived by 1H NMR
下载PDF
导出
摘要 胶质瘤是中枢神经系统最常见的恶性肿瘤,其发病原因和恶性进展机制均不明确,给胶质瘤的临床诊疗带来很大困难.胶质瘤恶性进展伴随着癌细胞代谢改变,但可以反映胶质瘤恶性进展的代谢物信息和分子机制目前仍不清楚.该研究以两种不同恶性程度的胶质瘤细胞系CHG5和U87为研究对象,用基于NMR的代谢组学方法分析这两种胶质瘤细胞系的代谢轮廓,寻找差异性代谢物.结果表明CHG5和U87的代谢轮廓存在明显差异.在高恶性程度的U87细胞中,柠檬酸盐(citrate)等15种代谢物有上升趋势;而乳酸盐(lactate)、牛磺酸(taurine)等6种代谢物有下降趋势.以上结果表明这些差异性代谢物可能与胶质瘤细胞的恶性特性密切相关.这些从胶质瘤细胞系获取的代谢信息将成为临床标本代谢组学研究的重要前提和有益补充. Gliomas are the most common malignant tumors. The lack of detailed information on the progression of gliomas make their clinical diagnosis and treatment a challenging endeavor. In this study, the metabolic profiles of two glioma cell lines (i.e., CHG5 and U87) with different malignancy were analyzed by 1H NMR. The results showed that there were significant differences in the metabolic profiles of these two cell lines. High levels of 15 metabolites including citratate, and lower levels of 6 metabolites including lactate and taurine were found in the CHG5 cell line, compared to the U87 cell line. The findings of this study suggested that metabolic profiles of glioma cell lines could be associated with their malignant features, thus may potentially be used as a measure in elucidating the molecular mechanisms underlying the progression of gliomas and in the development of non-invasive markers for monitoring of gliomas.
出处 《波谱学杂志》 CAS CSCD 北大核心 2014年第1期40-48,共9页 Chinese Journal of Magnetic Resonance
基金 厦门市科技计划社会发展资助项目(3502Z20124019 3502Z20104015) 福建省自然科学基金青年创新资助项目(2012D057)
关键词 核磁共振(NMR) 代谢轮廓 差异性代谢物 胶质瘤细胞 恶性程度 1H NMR, metabolic profile, metabolite, glioma cell lines, malignant features
  • 引文网络
  • 相关文献

参考文献11

  • 1Maher E A,Furnari F B,Bachoo R M,et al.Malignant glioma:genetics and biology of a grave matter[J].Genes Dev,2001,15(11):1 311-1 133.
  • 2Compostella A A,Tosoni V,Blatt,et al.Prognostic factors for anaplastic astrocytomas[J].J Neurooncol,2007,81(3):295-303.
  • 3Reifenberger J G,Reifenberger L,Liu,et al.Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p[J].Am J Pathol,1994,145(5):1 175-1 190.
  • 4Borodovsky A,Seltzer M J,Riggins G J.Altered cancer cell metabolism in gliomas with mutant IDH1 or IDH2[J].Curr Opin Oncol,2012,24(1):83-9.
  • 5Brandes A A,Franceschi E,Tosoni A,et al.MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients[J].J Clin Oncol,2008,26(13):2 192-2 197.
  • 6Craig A,Cloarec O,Holmes E,et al.Scaling and normalization effects in NMR spectroscopic metabonomic data sets[J].Anal Chem,2006,78(7):2 262-2 267.
  • 7Pérez-Enciso M,Tenenhaus M.Prediction of clinical outcome with microarray data:a partial least squares discriminant analysis (PLS-DA) approach[J].Hum Genet,2003,112(5-6):581 592.
  • 8Chinnaiyan P,Kensicki E,Bloom G,et al.The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism[J].Cancer Res,2012,72(22):5 878-5 888.
  • 9Weljie A M,Bondareva A,Zang P,et al.1H NMR metabolomics identification of markers of hypoxia-induced metabolic shifts in a breast cancer model system[J].J Biomol NMR,2011,49(3-4):185-193.
  • 10Cuperlovic-Culf M,Culf A S,Touaibia M,et al.Targeting the latest hallmark of cancer:another attempt at'magic bullet' drugs targeting cancers' metabolic phenotype[J].Future Oncol,2012,8(10):1 315-1 315.

引证文献1

;
使用帮助 返回顶部