期刊文献+

激光能量注入控制Ⅳ型激波干扰的数值研究 被引量:5

Numerical investigation of type Ⅳ shock interaction controlled by laser energy deposition
下载PDF
导出
摘要 激光能量注入可以控制Ⅳ型激波干扰,有效地减小钝头体压力载荷.基于有限体积法和分区结构网格划分的高分辨率数值方法,在来流马赫数为3.45的条件下,计算了单脉冲激光能量注入和连续激光能量注入对Ⅳ型激波干扰的影响.研究结果表明:单脉冲激光能量注入后一个较短时期内(50~60 μs),钝头体表面压力突然升高,随后压力有一个较为明显的下降过程,然后恢复原状态;当注入的连续激光能量较小时,钝头体表面压力略微增大,随着注入能量增大,钝头体表面压力峰值减小;在注入能量到一定程度时,钝头体表面压力峰值减小已不明显. The injection of laser energy willchange the wave structure and effectively reduce the pressure load on the blunt body surface. A high resolution numerical method based on finite volume method and domain decomposition of structural grid is used to compute the influence of laser single pulse energy and laser continuous energy injected into type IV shock interaction at Maeh number 3.45. The result shows that the pressure on the blunt body surface increases slightly when the injection laser energy with a single pulse is in a relatively short period(50 us to 60 us ), then it declines quickly, and it restores to the original state at last. The peak of the pressure on the blunt body surface increases slightly after the injection of a little laser energy with continuous deposition, and then decreases quickly with the increase of the laser energy deposition. It is remarkable that the peak of the pressure decreases slowly and tends to be a constant value even the laser energy deposition increases again.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第2期44-49,共6页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(91116010)
关键词 激光能量注入 数值研究 流动控制 激波干扰 laser energy deposition numerical investigation flow control shock interaction
  • 相关文献

参考文献10

  • 1Morris D J, Keyes J W. Computer programs for predicting supersonic and hypersonic interference flow fields and heating[R]. NASA TM-X- 2725, 1973.
  • 2Allan R W, Michael S H. Experimental shock-wave inter{erence heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11) :1557 -1565.
  • 3Kandala R, Candler G V. Numerical studies of laser induced energy deposition for supersonic flow control[J]. AIAA Journal, 2004,42 (11) : 2266-2275.
  • 4Edney B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock[R]. Aeronautical Research Inst of Sweden. 1968.
  • 5Kogan M N , Starodubtsev M A. Reduction of peak heat fluxes by supplying heat to the free stream[J]. Fluid Dynamics, 2003, 38(1) : 115- 125.
  • 6Gaitonde D V, Miller J H. Numerical exploration of shock interaction control with plasma-based techniques[R]. AIAA 2003 3483.
  • 7Adelgren R, Yan H, Elliott G, et al. Localized flow control by laser energy deposition applied to Edney Ⅳ shock impingement and intersec- ting shocks[R]. AIAA 2003-0031.
  • 8田正雨,李桦,范晓樯.非定常IV型激波-激波干扰数值模拟研究[J].力学学报,2004,36(1):94-100. 被引量:5
  • 9方娟,洪延姬,李倩,黄辉.高重复频率激光能量沉积减小超声速波阻的数值研究[J].强激光与粒子束,2011,23(5):1158-1162. 被引量:5
  • 10王殿恺,洪延姬,李倩.高重频激光能量注入提高进气捕获率的数值研究[J].强激光与粒子束,2013,25(7):1715-1718. 被引量:3

二级参考文献30

  • 1Sasoh A, Sekiya Y, Sakai T, et al.Drag reduction of blunt body in a supersonic flow with laser energy depositions[R].AIAA-1533, 2009.
  • 2Sasoh A, Sekiya Y, Sakai T, et al. Supersonic drag reduction with repetitive laser pulses through a blunt body[R]. AIAA 3585, 2009.
  • 3Mori K, Sasoh A. Experiments of laser pulse induced drag modulation in supersonic flow[R]. AIAA 3569, 2006.
  • 4Riggins D, Nelson H F, Johnson E. Blunt body wave drag reduction using focused energy deposition[J]. AIAAJournal, 1999. 37(4) : 460 -467.
  • 5Riggins D, Barnett J T, Taylor T. Drag reduction and heat transfer mitigation for blunt bodies in hypersonic flight A survey of techniques [R]. AIAA-6968, 200S.
  • 6Khamooshi A, Taylor T, Riggins D. Drag and heat transfer reductions in high-speed flows[J].AIAA Journal, 2007, 45( 10): 2401 -2413.
  • 7Oliveira A C, Minucci M A S, Toro P G P, et al. Bow shock wave mitigation by laser plasma energy addition in hypersonic flow[J]. Journal of Spacecraft and Rockets, 2008, 45(5): 921-927.
  • 8Oliveira A C, Minucci M A S, Taro P G P, et al. Schlieren visualization technique applied to the study of laser-induced breakdown in low density hypersonic flow[C]//Fourth International Symposium on Beamed Energy Propulsion. 2006:504-509.
  • 9Minucci M A S, Toro P G P, Chanes j B C, et al. Investigation of a laser-supported directed-energy "air spike" in Mach 6.2 air flow--preliminary results[R]. AIAA-0641, 2001.
  • 10Kremeyer K, Sebastian K, Shu C W. Computational study of shock mitigation and drag reduction by pulsed energy lines[J]. AIAA Journal, 2006, 44(8):1720 -1731.

共引文献10

同被引文献90

  • 1罗凯,王永海,汪球,栗继伟,李峥,聂春生,李铮.高焓风洞中等离子体激励流动控制试验[J].航空学报,2022,43(S02):92-99. 被引量:2
  • 2罗凯,汪球,李进平,赵伟.基于高温真实气体效应的双锥磁流体流动控制[J].航空学报,2022,43(S02):79-91. 被引量:1
  • 3田正雨,李桦,范晓樯.六类高超声速激波-激波干扰的数值模拟研究[J].空气动力学学报,2004,22(3):361-364. 被引量:7
  • 4王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.126-131,147-148.
  • 5M Y M Ahmed, N Qin. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 425-449.
  • 6A M Tahsini. Heat release effects on drag reduction in high speed flows[J]. Internat J Heat Mass Tran, 2013, 57(2): 657-661.
  • 7L N Myrabo, Y P Raizer. Laser-induced air spike for advanced transatmospheric vehicles[J]. AIAA 94-2451, 1994.
  • 8M A S Minucci, P G P Toro, A C Oliveira, et al: Flow visualization of laser induced air spikes in hypersonic flow[C]. AIP Conf Proc, 2005, 766: 514-527.
  • 9I I Salvador, M A S Minucci, P G Toro, et al: Experimental analysis of heat flux to a blunt body in hypersonic flow with upstream laser energy deposition-preliminary results[C]. AIP Conf Proc, 2006, 830: 163-171.
  • 10David Riggins, H F Nelson, Eric Johnson. Blunt-body wave drag reduction using focused energy deposition[J]. AIAA J, 1999, 37(4): 460-467.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部