期刊文献+

纳秒激光诱导紫铜黄铜等离子体特征参数的对比研究(英文) 被引量:4

Comparison of copper and brass plasma parameters produced bynanosecond laser-ablation
下载PDF
导出
摘要 基于1064nm Nd:YAG激光器,对比研究了紫铜和黄铜等离子的特征参数。洛仑兹函数拟合Cu I 324.75nm得到紫铜和黄铜等离子体的电子密度分别是3.6×1017 cm-3和3.3×1017 cm-3。为了减小谱线自发辐射跃迁几率不确定性和测量误差带来的计算误差,采用改进型迭代玻耳兹曼算法精确求解紫铜等离子体和黄铜等离子体的电子温度分别是6316K和6051K,分析表明,两种等离子体特征参数的差异主要是由于黄铜中的锌元素的电离能(9.39eV)大于铜元素的电离能(7.72eV)而造成的。实验数据证实激光诱导的紫铜和黄铜等离子体满足局部热力学平衡模型和光学薄模型。 The fundamental harmonic of a pulsed Nd..YAG laser (1064 nm) was used for the ablation of copper and brass samples in air at atmospheric pressure and the laser-induced plasma characteristics were examined comparatively. The electron densities No of 3.6 × 10^17 cm^-3 in copper plasma and 3.3 ×10^17 cm^- 3 in brass plasma were inferred from the Stark broadened profile of Cu I 324.75 nm averaged with 15 single spectra. In order to minimize relative errors in calculation of the electron temperature Tc, an improved iterative Boltzmaan plot method was used. Experimental results showed that the electron temperature in copper plasma was 6316 K larger than the value (6051 K) in brass plasma because the ionization potential of Zn (9.39 eV) is higher than that of Cu (7.72 eV). The plasma was verified to be in local thermodynamic equilibrium (LTE) and optical thin state based on the experimental results.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第2期121-126,共6页 High Power Laser and Particle Beams
基金 Supported by Scientific Research Program Funded by Shaanxi Provincial Education Department(2013JK0620,2013JK0640) Xi’an Science and Technology Planning Project(CX12189WL02,CX12189WL01) Natural Science Foundation Fund of Shaanxi Province(2012jq5006)
关键词 原子发射光谱 激光诱导击穿光谱 等离子体 电子温度 电子密度 atomic emission spectroscopy LIBS plasma electron temperature electron number density
  • 相关文献

参考文献2

二级参考文献27

  • 1李静,张鉴秋,孟祥儒.激光烧蚀硬铝产生等离子体温度和力学效应测量[J].强激光与粒子束,2007,19(2):249-252. 被引量:7
  • 2Cremers D A, Radziemski L J. Handbook of laser-induced breakdown spectroscopy[M]. Chiehester: John Wiley and Sons, Ltd, 2006.
  • 3Miziolek A W, Palleschi V, Schechter I. Laser-induced breakdown spectroscopy (LIBS) ~ fundamentals and applications [M]. New York: Cambridge University Press. 2006.
  • 4Pandhija S, Rai A K. Laser-induced breakdown spectroscopy: A versatile tool for monitoring traces in materials [J]. Pramana - J Phys, 2008,70(3) :553-563.
  • 5Yamamoto K Y, Cremers D A, Ferris M J, et al. Detection of metals in the environment using a portable laser-induced breakdown spectros- copy instrument [J]. Appl Spectrosc Rev, 1996,50 (2) : 222-233.
  • 6Noll R, Bette H, Brysch A, et al. Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry[J] Spectrochim Acta Part B, 2001,56(6) : 637 649.
  • 7Knight A K, Scherbarth N L, Cremers D A, et al. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration[J]. App Spectrosc Rev, 2000, 54(3) :331-340.
  • 8美国国家标准与技术研究院.[EB/OL].http://www.nist.gov/pml/data/asd.cfm.
  • 9Shaikh N M, Hafeez S, Rashid B, et al. Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third har- monics of a Nd:YAG laser [J]. EurPhysJ D,2007, 44:371-379.
  • 10Harilal S S, Bindhu C V, Issac Riju C, et al. Electron density and temperature measurements in a laser produced carbon plasma [J] J Ap- pl Phys, 1997, 82(5) : 2140-2146.

共引文献12

同被引文献42

  • 1刘廷瑞,何海涛.高精度单幅干涉图自动处理方法[J].光学仪器,2003,25(5):10-14. 被引量:3
  • 2Gabl E F, Failor B H, Armentrout C J, et al. Plasma jets from laser-irradiated planar targets[J]. Physical Review Letters, 1989, 63(25) : 2737-2740.
  • 3Farley D R, Estabrook K G, Glendinning S G, et al. Radiative jet experiments of astrophysical interest using intense lasers[J]. Physical Review Letters, 1999, 83(10) : 1982-1985.
  • 4Shigemori K, Kodama R, Farley D R, et al. Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets[J]. Physical Reviev E, 2000, 62(6): 8838-8841.
  • 5Bartholemy O, Margot J, Chaker M. Characterization of the expansion of an aluminum laser-in ent atr y ast p otogra phy[J]. IEEE Trans on Plasma Science, 2005, 33(2): 476- 477.
  • 6Purvis M, Grava J, Filevich J, et al. Dynamics of converging laser-created plasmas in semicylindrical cavities studied using soft X-ray laser interferometry[-J]. Physical Review E, 2007, 76: 046402.
  • 7Borner M, Fils J, Frank A, et al. Development of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics for the free electron density of laser-generated plasma[J]. Review of Scientific Instruments, 2012, 83: 043501.
  • 8Laville S, Vidal F, Johnston T W, et al. Modeling the time evolution of laser-induced plasmas for various pulse durations and fluences[J]. Physicso./'Plasmas, 2004, 11(5): 2182-2190.
  • 9Nicolai P, Tikhonchuk V T, Kasperczuk A, et aI. Plasma jets produced in a single laser beam interaction with a planar target[J]. Physics of Plasmas, 2006, 13: 062701.
  • 10Stamper J A, Papadopoulos K, Sudan R N, et al. Spontaneous magnetic fields in laser-produced plasmas[-J]. Physical Review Letters, 1971, 26(17): 1012-1015.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部