期刊文献+

微重力环境下蓄液器流体蓄留特性的试验研究 被引量:2

Experimental Investigation on Fluid-Storage Characteristic of Propellant Refillable Reservoir in Microgravity Environment
下载PDF
导出
摘要 为验证板式贮箱蓄液器的蓄液性能,搭建了蓄液器模型试验系统,针对蓄液器模型的蓄液性能和流体传输行为进行微重力落塔试验研究,得到微重力环境下蓄液器的流体蓄留和传输规律.试验结果表明,相对于楔形蓄液器,双圆锥形蓄液器具有更好的蓄液能力,对于双圆锥形蓄液器,承受侧向加速度时仍具有良好的蓄液能力,合理设计蓄液器结构可有效地蓄留液体并控制液体传输速度.该试验成果不仅为新型板式流体管理部件设计优化提供参考,同时也为空间环境下流体控制提供了一种新方法. In order to test and verify storage performance of vane type surface tension tank (STT), a model testing system is established and the microgravity drop tower tests are conducted based on experimental study of fluid storage and transportation behavior of propellant refillable reservoir (PRR). The rules of fluid storage and transportation of PRR in microgravity environment are obtained. The test results show that double-cone PRR have good liquid storage capacity more than cuniform PRR, and the double-cone PRR exhibits good liquid storage capacity with lateral acceleration. A rational design of PRR can effectively store liquid and control the velocity of liquid transportation. The test results offer a guideline for the optimization of new-style vane-type PMD, and also provide a new method for fluid control in space environment.
出处 《空间控制技术与应用》 2014年第1期27-30,51,共5页 Aerospace Control and Application
基金 国家自然科学基金资助项目(51306018)
关键词 微重力 蓄液器 流体管理 落塔试验 microgravity propellant refillable reservoir ~ fluid management drop tower test
  • 相关文献

参考文献14

  • 1TEGART J, WRIGHT N T. Double perforated plate as a capillary, barrier [ R ]. AIAA-83-1379,1983.
  • 2REAGAN M K, BOWMAN W J. Analytieal and experi- mental modeling of zero/low gravity fluid behavior [ R ]. A1AA-87-1865,1987.
  • 3JAEKLE D E Jr. Propellant management device concep- tual design and analysis: vane [ R ]. AIAA-91-2172, 1991.
  • 4REAGAN M K, BOWMAN W J. Transient studies of G- induced capillary flow [ J ]. Journal of Thermophysics and Heat Transfer, 1999, 13(4) :537-543.
  • 5STRANGE M, WOLK G, DREYER M, et al. Drop tower tests on capillary flow in open vanes under lateral acceleration [ R ]. AIAA-2000-3443,2000.
  • 6de LAZZER A, STANGE M, DREYER M, etal. lnflu- ent:e of lateral acceleration on capillary interfaces be- tween parallel plates [ J]. Microgravity Science and Technology, 2003, 14 ( 4 ) : 3-20.
  • 7JAEKLE D E Jr. Design & development of a communi- cations satellite propellant tank [ R ]. AIAA-95-2529, 1995.
  • 8COLLICOTT S H. Convergence behavior of surface evol- ver applied to a generic propellant-management device [J]. Journal of Propulsion and Power, 2001, 17 (4) : 845-851.
  • 9WEISLOGEL M M. Capillary flow in interior corners: the infinite column [J]. Physics of Fluids, 2001, 13 (11) :3101-3107.
  • 10COLLICOTT S H. Initial experiments on reduced-weight propellant management vanes [ R]. AIAA-2000-3442, 2000.

二级参考文献37

  • 1张孝谦,袁龙根,吴文东,田兰桥,姚康庄.国家微重力实验室百米落塔实验设施的几项关键技术[J].中国科学(E辑),2005,35(5):523-534. 被引量:13
  • 2Lekan J, Neumann E S, Sotos R G. Capabilities and constraints of NASA's ground-based reduced gravity facilities. In: Second International Microgravity Combustion Workshop, 1993. NASA CP-10113
  • 3Lekan J. Microgravity Research in NASA Ground-Based Facilities, 1989. AIAA paper 89-0236
  • 4LeKan J, Gott, D J, Jenkins A J. Users Guide for the 2.2 Second Drop Tower of the NASA Lewis Research Center, 1996. NASA TM 107090
  • 5JAMIC Japan Microgravity Center, 20. Nishi2-chome, kita-ku, Sapporo 060, Hokkaido, Japan, 1997
  • 6Japan Microgravity Center User's Guide Japan Microgravity Center (JAMIC). Japan Space Utilization Promotion Center (JSUP), 1991
  • 7Micro-Gravity Laboratory of Japan (MGLAB), 1990
  • 8.微重力下落实验设施用户指南[Z].株式会社日本微重力综合研究所, MG-技术资料-002,1995..
  • 9Drop Tower "Bremen" User Manual. Germany. Version 2.2, 1992
  • 10ZARM Drop Tower Bremen User Manual. Version 28, 2000

共引文献18

同被引文献23

  • 1张景芳.球锥贮箱微重力试验研究[J].强度与环境,1996,23(4):37-45. 被引量:2
  • 2李章国,刘秋生,纪岩,侯辉.航天器贮箱气液自由界面追踪数值模拟[J].空间科学学报,2008,28(1):69-73. 被引量:11
  • 3DIPPREY N F, ROTENBERGER S J. Orbital express propellant resupply servicing [ C ]//The 39's Joint Pro- pulsion Conference and Exhibit. Washington D.C: AIAA, 2003.
  • 4SHOEMAKER J, WRIGHT M. Orbital express space operation architecture program [C] //Spacecraft Plat- forms and Infrastructure. Bellingham: SPIE, 2004- 5419:57-65.
  • 5DOMINICK S, TEGART J. Orbital test results of a vaned liquid acquisition device [ C ]//The 30th AIAA Joint Propulsion Conference and Exhibit. Washington D. C. : AIAA, 1994.
  • 6CHATO D J, MARTIN T A. Vented tank resupply ex- periment-flight test results [ C ]//The 33rd Joint Propul- sion Conference and Exhibit. Washington D. C. : AIAA, 1997.
  • 7SHARIPOV F, KALEMPA D. Gaseous mixture flowthrough a long tube at arbitrary knudsen number [ J ]. Journal of Vacuum Science & Technology A, 2002,20 (3) :814-822.
  • 8HIRT C W NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries [ J ]. Journal of Computational Physics, 1981 ( 39 ) : 201-225.
  • 9TSAI W, YUE D K P. Computation of nonlinear free- surface flows [ J] Annual Review of Fluid Mechanics, 1996(28) :249-278.
  • 10SHIN S, LEE W I. Finite element analysis of incom- pressible viscous flow with moving free surface by selec- tive volume of fluid method [ J ]. International Journal of Heat and Fluid Flow, 2000(21 ) :197-206.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部