期刊文献+

新型软子格 被引量:1

New Soft Sublattices
下载PDF
导出
摘要 将软集与格代数相结合,给出新型软子格的新概念,得到了它的等价刻画。另外,利用软集的交和与运算,得到了新型软子格的交和与运算也是新型软子格。 In this paper,we combine soft sets with lattice algebra to study and define a new soft sublattice and obtain the equivalent characterizations of the new soft sublattice. By using the intersection and the AND opertaion of soft sets,we show that the intersection and the AND operation of the new soft sublattices are also the new soft sublattices.
机构地区 江南大学理学院
出处 《江南大学学报(自然科学版)》 CAS 2014年第1期105-108,共4页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家自然科学基金项目(11001109) 江苏省教育科学"十一五"规划基金项目(D/2006/01/171) 江苏省教育厅基金项目(2009-598) 江南大学创新团队发展计划项目(200902)
关键词 软集 对偶软集 软集的交运算 软集的与运算 新型软子格 soft sets,the dual soft sets,intersection of soft sets,AND opertaion,soft sublattice
  • 相关文献

参考文献21

  • 1Zadeh L A. Fuzzy sets[J]. Information and Control, 1965,8:338-353.
  • 2Pawlak Z. Rough sets [ J J. International Journal of Information Computer Science, 1982,11:341-356.
  • 3Astanassov K. Intuitionistic fuzzy sets [ J ]. Fuzzy Sets and Systems, 1986,20:87-96.
  • 4Molodtsov. Soft set theory-first results[J]. Computers and Mathematics with Applications ,1999,37:19-32.
  • 5Rosenfeld A. Fuzzy groups[ J]. Journal of Mathematieal Analysis and Applications, 1971,35:512-517.
  • 6Aktas H, Cagman N. Soft sets and soft groups[ J]. Information Science ,2007,177:2726-2735.
  • 7Sezgin A, Atagun A O. Soft groups and normalistic soft groups [ J]. Computers and Mathematics with Applications ,2011,62:685- 698.
  • 8Aygunoglu A, Aygun H. Introduction to fuzzy soft groups [ J ]. Computers and Mathematics with Applications, 2009, 58: 1279-1286.
  • 9FENG F, LI C X, Davvaz B, et al. Soft sets combined with fuzzy sets and rough sets:a tentative approach [ J ]. Soft Computers, 2010,14:899-911.
  • 10FENG F, LIU X Y, Leoreanu-Fotea V, et al, Soft sets and soft rough sets [ J 1- Information Science,2011,181 : 1125-1137.

二级参考文献36

  • 1孙绍权,谷文祥.布尔代数上的Fuzzy同余关系[J].模糊系统与数学,2005,19(4):34-38. 被引量:22
  • 2孙绍权.布尔代数的Fuzzy子代数和Fuzzy理想[J].模糊系统与数学,2006,20(1):90-94. 被引量:32
  • 3孙中品,孙绍权.布尔代数的(∈,∈∨q)-Fuzzy子代数和(∈,∈∨q)-Fuzzy理想[J].青岛科技大学学报(自然科学版),2006,27(3):275-278. 被引量:19
  • 4Molodstov D.Soft set theory-first results[J].Comput Math,1999(37):19-31.
  • 5Feng F,Cagman N.Soft semirings[J].Computers and Mathematics with Applications,2008,56:2621-2628.
  • 6Jun Y B.Soft BCK/BCI-algebras[J].Comput Math Appl,2008,56:1408-1413.
  • 7Jun Y B,Park C H.Applications of soft sets in ideal theory of BCK/BCI-algebras[J].Inform Sci,2008,178:2466-2475.
  • 8Aktas H.Soft sets and soft groups[J].Inform Sci,2007,177:2726-2735.
  • 9Maji P K,Boy A R.Biswas R.Soft set theory[J].Comput Math,2003,45:555-562.
  • 10Han S C, Gu Y D, Li H X.An application of incline matrices in dynamic analysis of generalized Fuzzy bidirectional associative memories[J].Fuzzy Set and System,2007,158(12) : 1340-1347.

共引文献47

同被引文献39

  • 1明平华.Fuzzy子格与Fuzzy同态[J].模糊系统与数学,1995,9(1):57-63. 被引量:9
  • 2杨云.格的Fuzy同余理想[J].模糊系统与数学,1997,11(1):24-30. 被引量:8
  • 3Molodtsov D. Soft set theory-- first results[J]. Computers and Mathematics with Applications, 1999,37 : 19 - 31.
  • 4Maji P K, Biswas R, Roy A R. Soft set theory[J]. Computers and Mathematics with Applications,2003,45 : 555- 562.
  • 5Maji P K, Roy A R. An application of soft sets in a decision making problem[J]. Computers and Mathematics with Applications, 2002,44 : 1077 - 1083.
  • 6Aktas H, et al. Soft sets and soft groups[J]. Information Sciences,2007,177:2726-2735.
  • 7Feng F, Jun Y B, Zhao X Z. Soft semirings[J]. Computers and Mathematics with Applications, 2008,56:2621 -2628.
  • 8Jun Y B. Soft BCK/BCI-algebras[J]. Computers and Mathematics with Applications,2008,56:1408-1413.
  • 9Jun Y B, Park C H. Applications of soft sets in ideal theory of BCK/BCI-algebras[J].Information Sciences,2008, 178:2466-2475.
  • 10Sezgin A, Atagtin A O. Soft groups and normalistic soft groups[J].Computers and Mathematics with Applications,2011,62:685-698.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部