期刊文献+

光学遥感压缩成像技术 被引量:3

Compressive Imaging Techniques in Optical Remote Sensing
下载PDF
导出
摘要 基于Shannon采样定理的传统信息获取系统在高空间、时间和谱分辨率及系统其它性能上存在难以突破的瓶颈,压缩采样理论为提升航天遥感信息获取能力提供了新的思路。基于压缩采样理论的成像技术(压缩成像)将采样、压缩和数据处理3个过程完美的结合在一起,避免了传统遥感成像系统"先采样再压缩"方式带来的传感器和计算资源浪费,是未来光学遥感极具潜力的成像方式。文章在简要介绍压缩采样基本理论的基础上,总结和分析了国际上目前提出的光学压缩成像系统原型,设计开展了3组压缩成像物理实验,特别结合航天遥感需求设计了推扫式压缩成像方案,实验结果验证了压缩采样的基本原理,并为未来光学遥感压缩成像系统的设计提供了借鉴。 Compressive sampling provides a new way for increasing the capability of information acqui-sition. Compressive sampling asserts that it is possible to accurately reconstruct signals from sub-Nyquist sam-pling, provided we make some additional assumptions(sparse or compressible) about the signal in question. The compressive imaging technology, which is based on the compressive sampling theory, integrates the proc-esses of sampling, compression and processing perfectly, avoiding resource waste caused by a traditional“sam-ple-then-compress”mode, and is a potential imaging technique for optical remote sensing. This paper first re-views the basic theory of compressive sampling. Then, several optical compressive imaging systems are intro-duced. Finally three physical experiments are designed to validate the principle of compressive imaging and the experiment results can be used as reference for the future optical remote compressive imaging system.
出处 《航天返回与遥感》 2014年第1期54-62,96,共10页 Spacecraft Recovery & Remote Sensing
基金 国家自然科学基金项目(61002024)资助
关键词 压缩采样 压缩成像 稀疏表示 测量矩阵 空间遥感 compressive sampling compressive imaging sparse representation measurement matrix space remote sensing
  • 相关文献

参考文献21

  • 1Candes E, Romberg J, Tao T. Stable Signal Recovery from Incomplete and Inaccurate Measurements[J]. Comm. Pure and Ap- plied Math., 2006, 59(8): 1207-1223.
  • 2Candes E, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information[J]. IEEE Trans. Inf. Theory, 2006, 52(2): 489-509.
  • 3Donoho D. Compressed Sensing[J]. IEEE Trans. Inf. Theory, 2006, 52(4): 1289-1306.
  • 4Duarte M F, Davenport M A, Takhar D, et al. Single-pixel Imaging via Compressive Sampling[J]. IEEE Signal Process. Maga., 2008, 25(2): 83-91.
  • 5Sun B, Edgar M, Bowman R, et al. 3D Computational Imaging with Single-pixel Detectors[J]. Science, 2013, 340: 844-847.
  • 6Gu J, Nayar S K, Grinspun E, et al. Compressive Structured Light for Recovering Inhomogeneous Participating Media[C]. Proc. European Conference on Computer Vision, 2008.
  • 7Sen P, Darabi S, Compressive Dual Photography[C]. Proc. of Eurographics 2009, 2009.
  • 8Wagadarikar A, John R, Willett R, et al. Single Disperser Design for Coded Aperture Snapshot Spectral Imaging[J]. Applied Optics, 2008, 47(10): B44-B51.
  • 9Feldman D, Pitsianis N, Guo J P, et al. Compressive Optical Montage Photography[C]. In Photonic Devices and Algorithms for Computing VII, Proc. of SPIE, 2005.
  • 10Portnoy A D, Pitsianis N P, Brady D J, et al. Thin Digital Imaging System Using Focal Plane Coding[C]. In Proc. of SPIE-IS&T Electronic Imaging, SPIE, 2006.

同被引文献12

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部