期刊文献+

关于S-拟正规性的一些必要条件

Several necessary conditions of S-quasinormal subgroup
下载PDF
导出
摘要 为证明S-拟正规子群是否具有半正规性,并应用有限群的子集的S-拟正规性来研究有限群的超可解性.设G为有限群,H≤G,称H为G的S-拟正规子群,如果对于G的任意一个Sylow子群P,都有HP=PH.给有限群的某些子集赋予S-拟正规性。 To prove whether S-quasinormal subgroups have half normality , and using S-quasinormality of subset to study the supersolvablity in finite group .Let G be a finite group . A subgroup H of G is said to be S-quasinormal in G if HP=PH for all Sylow subgroups P of G.Let several subsets in finite group have S-quasinormal, which could get the result that the group have supersolvablity .
作者 王芬 徐颖吾
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2014年第1期117-119,共3页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 陕西省教育厅自然科学专项基金资助项目(11JK0499)
关键词 拟正规子群 S-拟正规子群 超可解群 quasinormal subgroup S-quasinormal subgroup super solvable subgroup
  • 相关文献

参考文献13

  • 1ORE O. Contributions to the theory of groups of finite order [ J]. Duke Math, 1939 (5) :431 - 460.
  • 2KEGEL O H. Sylow gruppen and subnormal endlicher gruppen [ J ]. Math Z, 1962,78:205 - 221.
  • 3DESKINS W E. On quasionrmal subgroups of finite groups [ J. Math Z, 1963,82 : 125 - 132.
  • 4ZI-IEN C S, SHI R L,WU J S. Finite group with normally em-bedded subgroups [ J ]. Group Theory ,2010 ( 13 ) :257 - 265.
  • 5BALLESER - BOLINCHES A, PEDRAZA - AGUILERA M C. Sufficient conditions for supersolvability of finite groups [ J ]. Journal of Pure and Applied Algebra, 1998,127 : 118 - 123.
  • 6KHALED A, SHARO A L. On Nearly S - Permutable subgroups of finite groups[ J]. Communications in Algebra,2012,40:315 - 326.
  • 7SCHMIDT P. Subgroups permutable with all Sylow subgroups [ J ]. Algebra, 1998,207:285 - 293.
  • 8李世荣,杜妮,钟祥贵.有限群的素数幂阶S-拟正规嵌入子群[J].数学年刊(A辑),2011,32(1):27-32. 被引量:3
  • 9LI S R, HE X L. On normally embedded subgroups of finite groups[ J]. Comm. Algebra,2008 ( 36 ) :2333 - 2340.
  • 10SRINIVASAN S. Two sufficient conditions for the supersolv- ability of finite groups [ J]. IsraeI J Math, 1980,35:210 - 214.

二级参考文献11

  • 1Tate J. Nilpotent quotient groups [J]. Topology, 1964, 3:109-111.
  • 2Huppert B. Endliche gruppen I [M]. Berlin, Heidelberg, New York: Springer-Verlag, 1967.
  • 3Robinson D J S. A course in the theory of groups [M]. Berlin, Heidelberg, New York: Springer-Verlag, 2003.
  • 4Kegel O H. Sylow-gruppen und subnormalteiler endlicher gruppen [J]. Math Z, 1962 78:205-221.
  • 5Deskins W E. On quasinormal subgroups of finite groups [J]. Math Z, 1963, 82:125-132.
  • 6Schmid P. Subgroups permutable with all Sylow subgroups [J]. J Algebra, 1998, 207:285- 293.
  • 7Ballester-Bolinches A, Pedraza-Aquilcra M C. Sutticient conditions for supersolvability of finite groups [J]. Journal of Pure and Applied Algebra, 1998, 127:118-123.
  • 8Assad M, Heliel A A. On S-quasinormal embedded subgroups of finite groups [J]. Jour- nal of Pure and Applied A19ebra, 2001, 165:129 135.
  • 9Li Shirong, He Xuanli. On normally embedded subgroups of finite groups [J]. Comm Algebra, 2008, 36:2333 2340.
  • 10Doerk R. Hawkes T. Finite soluble groups [M]. Berlin, New York: Walter de Gruyter, 1992.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部