期刊文献+

配分函数法的改进及应用 被引量:1

The modified partition function method and its application
原文传递
导出
摘要 针对传统配分函数难以处理分割子区间长度s不为时间序列长度T的约数或者T为质数的情况,采用类似多重分形去趋势波动法(MFDFA)的操作方式,提出修正配分函数法.用二项式多重分形做数值模拟,得出的数值解与理论值几乎重合,表明修正配分函数法是有效的.并较为详细地给出了配分函数法各参数的经济含义.用修正配分函数法分析了上证A股指数的多重分形性,通过打乱序列、去极值、迭代振幅匹配傅里叶变换(IAAFT)研究了多重分形产生的原因.结果表明:上证A股的分布、极值、序列的时变相关性均影响多重分形的形成,其中序列自相关性为主要因素. On account of traditional partition function hardly applying to the condition that the time series length T is a prime number or cannot be divisible by scaling s, we put forward a modified partition function whose algorithm procedure is similar to MFDFA. Using the numerical simulation of binomial multifractality, the result shows that the new method dealing with the multifraetality of time series whose length is prime number is feasible and effective. The economic meaning of parameters in partition function are also discussed. By applying modified partition function, we investigate the multifraetality of Shang- hai A-share index. Through shuffling, removing extreme values and iterating amplitude adjusted fourier transform technological, we find that the temporal correlation, fat-tail distribution and extreme events are all contributed to the multifractality, but the autocorrelation in sequence plays an important role in the source of multifractality.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第3期668-675,共8页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71071077 71371098) 中央高校基本科研业务费专项资金(NC2012001) 江苏省高校哲学社会科学重点研究基地重大项目(2012JDXM005)
关键词 修正配分函数法 数值模拟 多重分形 modified partition function method numerical simulation multifractality
  • 相关文献

参考文献28

  • 1Mandelbrot B B. Fractals and scaling in finance[M]. New York: Springer, 1997: 23-29.
  • 2魏宇.多分形波动率测度的VaR计算模型[J].系统工程理论与实践,2009,29(9):7-15. 被引量:11
  • 3Muzy J F, Bacry E, Arnéodo A. Wavelets and multifractal formalism for singular signals: Application to turbulence data[J]. Physical Review Letters, 1991, 67(25): 3515-3518.
  • 4Ghashghaie S, Breymann W, Peinke J, et al. Turbulent cascades in foreign exchange markets[J]. Nature, 1996, 381: 767-770.
  • 5Peng C K, Buldyrev S V, Havlin S, et al. Mosaic organization of DNA nucleotides[J]. Physical Review E, 1994, 49(2): 1685-1689.
  • 6Kantelhardt J W, Zschiegner S A, Koscienlny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316(1-4): 87-114.
  • 7Feder J. Fractals[M]. New York: Plenum Press, 1988.
  • 8Sun X, Chen H P, Wu Z Q, et al. Multifractal analysis of Hang Seng index in Hong Kong stock market[J]. Physica A, 2001, 29(1-4): 553-562.
  • 9Sun X, Chen H P, Yuan Y Z, et al. Predictability of multifractal analysis of Hang Seng stock index in Hong Kong[J]. Physica A, 2001, 301(1-4): 473-482.
  • 10Turiel A, Pérez-Vicente C J. Multifractal geometry in stock market time series[J]. Physica A, 2003, 322(4): 629-649.

二级参考文献39

共引文献88

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部