摘要
群智能优化算法已被证实可以用于解决实际工程的优化问题。水循环算法可对约束问题进行求解。基于自然界中水循环过程提出的一种新型智能优化算法———水循环算法(WCA),研究了其应用于空间桁架结构优化设计问题的可行性及有效性,论文对两个空间桁架结构进行了截面优化计算分析,并与已有文献优化结果进行了比较,研究结果表明:WCA优化算法相对于群搜索算法(GSO)、启发式粒子群优化算法(HPSO)等优化算法能够提供更快的收敛速度,收敛结果也更好。
Swarm intelligence algorithms have been proved to he a useful tool for solving practical engineering optimization problems. In this paper, a new algorithm, water cycle algorithm (WCA) ,inspired from nature and based on water cycle, is used to solve the constrained problems. The feasibility and effectiveness of WCA in the optimization design of spaeial truss structures are studied. Two spaeial truss cases were analyzed in section optimization, and the analysis results were compared with those obtained utilizing other well-known intelligent algorithms such as GSO and HPSO. The comparison shows that WCA can provide a faster convergence rate and a better solution than GSO and HPSO.
出处
《建筑钢结构进展》
北大核心
2014年第1期34-41,共8页
Progress in Steel Building Structures
基金
国家自然科学基金(51178121)
广东省自然科学基金(S2012020011082
9151009001000059)
关键词
WCA
空间桁架
收敛速度
优化设计
WCA
spacial truss structure
convergence rate
optimal design