期刊文献+

基于WCA优化算法的空间桁架结构优化设计 被引量:6

Structural Optimal Design of Spacial Truss Structures Based on WCA
下载PDF
导出
摘要 群智能优化算法已被证实可以用于解决实际工程的优化问题。水循环算法可对约束问题进行求解。基于自然界中水循环过程提出的一种新型智能优化算法———水循环算法(WCA),研究了其应用于空间桁架结构优化设计问题的可行性及有效性,论文对两个空间桁架结构进行了截面优化计算分析,并与已有文献优化结果进行了比较,研究结果表明:WCA优化算法相对于群搜索算法(GSO)、启发式粒子群优化算法(HPSO)等优化算法能够提供更快的收敛速度,收敛结果也更好。 Swarm intelligence algorithms have been proved to he a useful tool for solving practical engineering optimization problems. In this paper, a new algorithm, water cycle algorithm (WCA) ,inspired from nature and based on water cycle, is used to solve the constrained problems. The feasibility and effectiveness of WCA in the optimization design of spaeial truss structures are studied. Two spaeial truss cases were analyzed in section optimization, and the analysis results were compared with those obtained utilizing other well-known intelligent algorithms such as GSO and HPSO. The comparison shows that WCA can provide a faster convergence rate and a better solution than GSO and HPSO.
出处 《建筑钢结构进展》 北大核心 2014年第1期34-41,共8页 Progress in Steel Building Structures
基金 国家自然科学基金(51178121) 广东省自然科学基金(S2012020011082 9151009001000059)
关键词 WCA 空间桁架 收敛速度 优化设计 WCA spacial truss structure convergence rate optimal design
  • 相关文献

参考文献17

  • 1Kaveh A,Talatahari S. Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures [ J ]. Computers and Structures, 2009,87 (5/6) :267-283.
  • 2Goldherg D E. Genetic algorithms in search optimization and machine learning[-D. Boston, MA:Addision-Wesley, 1989.
  • 3Dorigo M. Di Caro G D,Gambardella L M. Ant algorithms for discrete optimization[-J. Artificial Life,1999,5(2) :137 172.
  • 4Kenndy J,Eberhart R C. Particle swarm optimization C// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ, USA, 1995 : 1942-1948.
  • 5Li L J, Huang Z B, Liu F. An improved particle swarm optimizer for truss structure optimization[-Cff/Proceedings of 2006 International Conference on Computational Intelligence and Security. Guangzhou, 2006 : 924 928.
  • 6徐菁,李壮,刁延松.基于粒子群算法的大跨度空间结构监测系统中应变传感器最优布点研究[J].建筑钢结构进展,2013,15(1):57-64. 被引量:11
  • 7He S,Wu Q H,Saunder J R. A novel group search optimizer inspired by animal behaviour ecology ]-C//2006 IEEE Congress on Evolutionary Computation. Vancouver, BC, Canada,2006 .4415-4421.
  • 8Lijuan Li, Feng Liu. Group search optimization for applications in structural design E M]. Berlin= Springer Berlin Heidelberg, 2011.
  • 9李晓磊,钱积新.人工鱼群算法:自下而上的寻优模式[c]//过程系统工程年会论文集.2001:76-82.
  • 10李丽娟,彭懿.粒子群-鱼群混合算法在桁架结构优化设计中的应用[J].空间结构,2012,18(4):44-48. 被引量:4

二级参考文献47

共引文献74

同被引文献61

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部