期刊文献+

On the elliptic curve y^2=x^3-2r Dx and factoring integers

On the elliptic curve y^2=x^3-2r Dx and factoring integers
原文传递
导出
摘要 Let D=pq be the product of two distinct odd primes.Assuming the parity conjecture,we construct infinitely many r≥1 such that E2rD:y2=x3-2rDx has conjectural rank one and vp(x([k]Q))≠vq(x([k]Q))for any odd integer k,where Q is the generator of the free part of E(Q).Furthermore,under the generalized Riemann hypothesis,the minimal value of r is less than c log4 D for some absolute constant c.As a corollary,one can factor D by computing the generator Q. Let D=pq be the product of two distinct odd primes.Assuming the parity conjecture,we construct infinitely many r≥1 such that E2rD:y2=x3-2rDx has conjectural rank one and vp(x([k]Q))≠vq(x([k]Q))for any odd integer k,where Q is the generator of the free part of E(Q).Furthermore,under the generalized Riemann hypothesis,the minimal value of r is less than c log4 D for some absolute constant c.As a corollary,one can factor D by computing the generator Q.
出处 《Science China Mathematics》 SCIE 2014年第4期719-728,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 11271212)
关键词 elliptic curve integer factoring Selmer group 因子分解 椭圆曲线 整数 黎曼假设 奇素数 无穷多 发电机 极小值
  • 相关文献

参考文献13

  • 1Bach E, Sorenson J. Explicit bounds for primes in residue classes. Math Comp, 1996, 65: 1717-1735.
  • 2Birch B J, Stephens N M. The parity of the rank of the Mordell-Weil group. Topology, 1966, 5: 295-299.
  • 3Bremner A, Silverman J H, Tzanakis N. Integral points in arithmetic progression on y2 = x(x2 - n2). J Number Theory, 2000, 80: 187-208.
  • 4Burhanuddin I A. Some computational problems motivated by the Birch and Swinnerton-Dyer conjecture. PhD. Thesis. California: University of Southern California, 2007.
  • 5Dokchitser T. Notes on the parity conjecture. In: Hilbert Modular Forms and Galois Deformations Advanced Courses in Mathematics-CRM Barcelona. Basel: Springer, 2013, 201-249.
  • 6Edixhoven B. Rational elliptic curves are modular. Asérisque, 2002, 276: 161-188.
  • 7Elkies N. Heegner point computations. In: Algorithmic Number Theory. Lecture Notes in Computer Science, vol.877. Berlin: Springer, 1994, 122-133.
  • 8Gross B, Zagier D. Heegner points and derivatives of L-series. Invent Math, 1986, 84: 225-320.
  • 9Lang S. Conjectured Diophantine estimates on elliptic curves. Progr Math, 1983, 35: 155-171.
  • 10Siksek S. Infinite descent on elliptic curves. Rocky Mountain J Math, 1995, 25: 1501-1538.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部