期刊文献+

RLD估计及其在测量平差中的应用

RLD Estimation and Its Application in the Surveying Adjustment
下载PDF
导出
摘要 为了克服最小二乘估计在参数估计中处理复共线性的不足,得出一种新的有偏估计,并给出了此估计在均方误差意义下的优良性质,讨论了有偏估计中偏参数的选取问题,通过理论分析和算例分析说明新的估计的优良性. In order to overcome the shortage of the multicollinearity in least square estimation,a new biased estimation is proposed. The new estimation properties are given in the mean square error sense. The selecting of the biased parameters is studied. Theory analysis and numerical simulation demonstrate that the new method is superior.
出处 《河南科学》 2014年第2期224-229,共6页 Henan Science
基金 国家自然科学基金项目(41174005)
关键词 复共线性 有偏估计 RLD估计 均方误差 参数 multicollinearity biased estimation RLD estimation mean square error parameter
  • 相关文献

参考文献11

  • 1Hoerl A E, Kennard R W. Ridge regression: biased estimation for non-orthogonal problems J]. Technometrics, 1970 (12) :55-82.
  • 2Liu K. A new class of biased estimate in linear regression [J]. Communications in Statistics Theory and Methods, 1993 (22) : 393-402.
  • 3Kaciranlar S, Sakallioglu S, Akdeniz F. Mean squared error comparisons of the modified ridge estimator and the restricted ridge regression estimator[J]. Communications in Statistics Theory and Method, 1998 (27) : 131-138.
  • 4Kaciranlar S, Sakallioglu S, Akdeniz F, et al. A new biased estimator in linear regression and a detailed analysis of the widely- analysed dataset on Portland Cement [J]. The Indian Journal of Statistics, 1999 (61) :443-459.
  • 5Kaciranlar S, Sakallioglu S. Combining the Liu estimator and the principal component regression estimator[J]. Communications in Statistics Theory and Methods, 2001 (30) : 2699-2705.
  • 6Akdeniz F. The examination and analysis of residuals for some biased estimators in linear regression [J]. Communications in Statistics Theory and Method, 2001 (30) : 1171-1183.
  • 7Ozkale M R, Kaciranlar S. The restricted and unrestricted two-parameter estimators [J]. Communications in Statistics Theory and Methods, 2007 (36) : 2707-2725.
  • 8Ozkale M R, Kaciranlar S. Superiority of the r-d class estimator over some estimators by the mean square error matrix criterion [J] Statistics and Probability Letters, 2007 (77) : 438-446.
  • 9Lawless J F, Wang P. A simulation study of ridge and other regression estimators [J]. Communications in Statistics, 1976, A5: 307-323.
  • 10Hocking R R, Speed F M. A class of biased estimators in linear regression[J]. Technometrics, 1976 (18) : 425-438.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部