期刊文献+

一种基于FNN的高速网络拥塞控制策略 被引量:3

Policy of Fuzzy Neural Network Based Congestion Control in High-Speed Network
下载PDF
导出
摘要 以 ATM( asynchronous transfer mode)为研究对象 ,提出一种基于模糊神经网络 ( fuzzy neural network,简称 FNN)的流量预测和拥塞控制策略 .拥塞控制是高速网络 (如 ATM)研究中的关键问题之一 .传统的基于 BP神经网络的流量预测方法因其收敛速度较慢且具有较大的误差 ,影响了拥塞控制效果 ,而模糊神经网络由于具有处理不确定性问题和很强的学习能力 ,能很好地解决这一问题 .最后通过仿真 ,比较和分析了基于 BP神经网络和基于 FNN方法的性能 。 A kind of traffic prediction and congestion control policy based on FNN (fuzzy neural network) is proposed for ATM (asynchronous transfer mode). Congestion control is one of the key problems in high-speed networks, such as ATM. Conventional traffic prediction method for congestion control using BPN (back propagation neural network) has suffered from long convergence time and dissatisfying precision, and it is not effective. The fuzzy neural network scheme presented in this paper can solve these limitations satisfactorily for its good capability of processing inaccurate information and learning. Finally, the performance of the scheme based on BPN is compared with the scheme based on FNN using simulations. The results show that the FNN scheme is effective.
出处 《软件学报》 EI CSCD 北大核心 2001年第1期41-48,共8页 Journal of Software
基金 国家重点基础研究发展规划资助项目! (G19980 30 40 5 )
关键词 拥塞控制 流量预测 模糊神经网络 高速网络 ATM FNN 计算机网络 Asynchronous transfer mode Computer simulation Convergence of numerical methods Fuzzy sets Mathematical models Neural networks Telecommunication networks Telecommunication traffic
  • 相关文献

参考文献6

  • 1梁艳春,王政,周春光.模糊神经网络在时间序列预测中的应用[J].计算机研究与发展,1998,35(7):663-667. 被引量:11
  • 2梁燕春,计算机研究与发展,1998年,35卷,7期,661页
  • 3Fan Z,IEE Proc Communications,1997年,295页
  • 4Park,IEEE Commun Magazine,1995年,33卷,10期,68页
  • 5Melody M W,计算机通信,1995年,18卷,8期,563页
  • 6王伟,人工神经网络原理,1995年,52页

二级参考文献6

共引文献10

同被引文献22

  • 1吴新余,戈玲,叶大振.CDMA蜂窝系统中基于模糊神经网络的反向链路功率控制[J].电子学报,2000,28(z1):101-104. 被引量:4
  • 2南华,刘泽民.B-ISDN实时动态路由优化的神经网络方法[J].北京邮电大学学报,1997,20(2):1-5. 被引量:1
  • 3王伟.人工神经网络原理[M].北京:北京航空航天大学出版社,1995.20-76.
  • 4Hausan Wong, Ling Guan. A Neural Learning Approach for Adaptive Image Restoration Using a Fuzzy Model- Based Network Architecture,Senior Member. IEEE
  • 5Hiramatsu A. ATM communications network control by neural networks. IEEE Transactions on Neural Networks, 1990, 1 (1): 122~130
  • 6Jensem D. B- ISDN network management by a fuzzy logic controller. IEEE Globecom, 1994, 799~804
  • 7Hou C L, Lee S J. A neural - fuzzy system for rate-based control in ATM networks[A]. IEEE SMC'99 [C], 1999, 443~448
  • 8Custodio J J, Tascon M. A new neuro- fuzzy system for efficient ATM traffic control [A] .ICANN [C], 1999, 964~969 [J] . IEEE Trans EvoluComputation, 1997, 1 (1): 53~66
  • 9HABIB I W,SASDAWI T N.Access control of bursty voice traffic in ATM networks[J].Computer networks and ISDN systems,1 995.27(10):141 1-1427.
  • 10FAN Z,MARS P.Access flow control scheme for ATM networks using neural-network-based traffic prediction[J].IEE Proc.-Commun.,1 997.144(5):295-300.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部