期刊文献+

基于SOFM网络的机械设备多类型信息融合与状态识别 被引量:4

MULTI-TYPE INFORMATION FUSION AND STATE IDENTIFICATION BASED SOFM
下载PDF
导出
摘要 从信息源的角度来说 ,机械监测与诊断系统是一个多源信息处理系统。提出了利用信息压缩进行多类型特征信息融合的思想 ,研究了自组织特征映射 (SOFM)网络处理这种多类型信息融合的可视化状态识别方法。网络输出层激活结点的轨迹 ,可以正确直观地反映出多源信息所表示状态的潜在变化特征 ,从而便于识别早期故障的发生与变化趋势。通过对试验及现场数据的融合处理 ,说明了所提出方法的有效性。 From the viewpoint of information source, the system of monitoring and diagnosis for machinery is one of multi source information processing systems. Various features can be reduced to three types:numeric, linguistic and graphics. Through translating the non numeric symptom into numeric one, information of various types can be denoted by multi dimension vector. So, the idea of features fusion of various types is proposed through information compression, and the method of how self organizing feature mapping (SOFM) network deals with it is studied. With the trace of active nodes on output layer, the underlying features varying of state represented by multi source information can be observed correctly and visually, so occurrence and varying trend of faults can be identified early. The high performance of this method proposed is exempli fied by handling fusion in experiments and field work.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2001年第1期37-41,共5页 Journal of Mechanical Engineering
基金 国家'攀登B'项目资助!(PD95 2 190 8)
关键词 信息融合 自组织特征映射 故障诊断 状态识别 SOFM网站 机械设备 Information fusion Self organization feature mapping Fault diagnosis
  • 相关文献

参考文献2

  • 1吴今培,智能故障诊断与专家系统,1997年
  • 2Chen Y D,J Sound Vibration,1995年,188卷,2期,227页

同被引文献38

  • 1王春喜,王成城,王凯.智能制造装备预测性维护技术研究和标准进展[J].中国标准化,2021(2):15-21. 被引量:17
  • 2钟伟才,刘静,焦李成.多智能体遗传算法用于线性系统逼近[J].自动化学报,2004,30(6):933-938. 被引量:25
  • 3徐国平,田蔚风,金志华.基于统计参数分析和RBF网络的动调陀螺故障诊断方法[J].航天控制,2007,25(3):88-90. 被引量:3
  • 4Sun W, Palazoglu A, Romagnoli J A. Detecting abnormal process trends by wavelet-domain hidden Markov models [ J ]. Journal of the American Institute of Chemical Engineers, 2003,49( 1 ) : 140 - 150.
  • 5Kabisatpathy P, Barua A, Sinha S. Artificial neural network model-based observers[J]. IEEE Circuits and Devices Maga- zine, 2005, 21(4): 18-26.
  • 6El-Gamal M A, Abdul ghafour G M. Fault isolation in analog circuits using a fuzzy inference system[J]. Computers and Elec- trical Engineering, 2003, 29(1) : 213 - 229.
  • 7Adel Mohsen A K, Abu EL-Yazeed M F. Selection of input stimulus for fault diagnosis of analog circuits using ARMA mod- el[J]. International Journal of Electronics and Communica- tions, 2004, 58(3): 212-217.
  • 8Rabiner L R, Huang B H. An introduction to hidden Markov mod- els[J]. IEEE Signal Processing Magazine, 1986, 3(1) : 4 - 16.
  • 9Lee J M, Kim S J, Hwang Y, et al. Diagnosis of mechanical fault signals using continuous hidden Markov model[J]. Jour- nal of Sound and Vibration, 2004, 27(6) : 1065 - 1080.
  • 10Fatih C, Ratna B C. Hierarchical HMMs for autonomous diag- nostics and prognostics[C]//Proc, of the International Joint Conference on Neural Networks, 2006 : 2445 - 2452.

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部