期刊文献+

基于MSCO-RBFNN控制的开关磁阻电动机在工业缝纫机中的应用

Control for switched reluctance motor in the application of industrial sewing machine based on mutative scale chaos optimization radial basis function nerual network
下载PDF
导出
摘要 为实现开关磁阻电动机(Switched Reluctance Motor,SRM)无位置传感器控制并减小转矩脉动,以推动SRM在工业缝纫机上的进一步应用,提出一种基于变尺度混沌优化的径向基神经网络(MSCO-RBFNN)方法,对开关磁阻电动机进行建模,以一台四相8/6极750W开关磁阻电动机为样机建立有限元模型(FEM),获得磁链、电流与转子位置关联样本数据,对MSCO-RBFNN模型进行训练和测试。Matlab/Simulink软件仿真和数字信号处理(DSP)实验结果表明,MSCO-RBFNN模型具有较好的收敛性能,所计算的转子位置与实际转子位置的误差较小,使电动机换向准确,减小了电动机的转矩脉动。 Small torque pulsation and position-sensorless control can promote application of Switched Reluctance Motor (SRM) for industrial sewing machine. The model of SRM based on Mutative Scale Chaos Optimization Radial Basis Function Nerual Network (MSCO- RBFNN) method is presented. The Finite Element Model (FEM) of a four-phase, 8/6 pole, 750W prototype of SRM is established for sample data of the flux linkage, current and rotor position, which is used to train and test the MSCORBFNN model. The simulation and experiment results demonstrate that the optimized neural network has better convergence performance, the rotor position deviation between the theoretic calculation and the experimental result is demonstrated small to enable accurate motor commutation and small torque pulsation.
出处 《现代制造工程》 CSCD 北大核心 2014年第3期17-22,共6页 Modern Manufacturing Engineering
基金 国家自然科学基金项目(51175077) 浙江省教育厅科研项目(Y201120640) 台州市科研项目(20111xcp02)
关键词 混沌优化 工业缝纫机 开关磁阻电动机 无位置传感器控制 chaos optimization industrial sewing machine switched reluctance motor position-sensorless control
  • 相关文献

参考文献11

  • 1李强国,李辉,吴灜喆.基于工业缝纫机的PMSM控制系统设计[J].电力电子技术,2012,46(11):93-94. 被引量:2
  • 2王祥,蔡起仲.开关磁阻电动机原理及在纺织行业中的应用[J].江苏纺织,2006(03A):38-41. 被引量:3
  • 3邓智泉,蔡骏.开关磁阻电机无位置传感器技术的研究现状和发展趋势[J].南京航空航天大学学报,2012,44(5):611-620. 被引量:20
  • 4Lyons J P, MacMinn S R, Preston M A. Flux/current meth- ods for SRM rotor position estimation. Conf Rec IEEE-IAS Annu Meeting[ C ]. Deanborn, USA, 1991:482 - 487.
  • 5Cheok A D, Ertugrul N. High robustness and reliability of fuzzy logic based position estimation for sensorless switched reluctance motor drives [ J ]. IEEE Trans Power Electron, 2000,15(2) :319 -334.
  • 6Nesimi E, Cheok A D. Indirect angle estimation in switched reluctance motor drives using fuzzy logic based motor model [J]. IEEE Trans Power Electron,2000,15(6) :1029 -1044.
  • 7Cheok A D, Wang Z F. Fuzzy logic rotor position estimation based switched reluctance motor DS drive with accuracy en- hancement[ J ]. IEEE Trans Power Electron, 2005,20 (4) : 908 - 921.
  • 8Mese E,Torrey D A. An approach for sensorless position esti- mation for switched reluctance motors using artificial neural networks [ J ]. IEEE Trans Power Electron,2002,17 (1) :66 - 75.
  • 9Hudson C A, Lobo N S, Krishnan R. Sensorless control of single switch-based switched reluctance motor drive using neural network [ J ]. IEEE Trans Ind Eletron, 2008,55 ( 1 ) : 321 - 329.
  • 10夏长亮,王明超,史婷娜,郭培健.基于神经网络的开关磁阻电机无位置传感器控制[J].中国电机工程学报,2005,25(13):123-128. 被引量:71

二级参考文献32

  • 1夏长亮,祁温雅,杨荣,史婷娜.基于混合递阶遗传算法和RBF神经网络的超声波电动机自适应速度控制[J].电工技术学报,2004,19(9):18-22. 被引量:13
  • 2夏长亮,王明超,史婷娜,郭培健.基于神经网络的开关磁阻电机无位置传感器控制[J].中国电机工程学报,2005,25(13):123-128. 被引量:71
  • 3夏长亮,王明超.基于RBF神经网络的开关磁阻电机单神经元PID控制[J].中国电机工程学报,2005,25(15):161-165. 被引量:52
  • 4Krishnan R. Sensorless operation of SRM drives: R & D status[C]. Denver, CO USA: IEEE Industrial Electronics Society Annual Conference, 2001.
  • 5Xu Longya, Wang Chuanyang. Accurate rotor position detection and sensorless control of SRM for super-high speed operation[J]. IEEE Transactions on Power Electronics, 2002, 17(5): 757-763.
  • 6Bellini A, Flipetti F, Franceschini G et al. Position sensorless control of a SRM drive using ANN-techniques[C]. St. Louis, MO USA: IEEE Industry Applications Society Annual Meeting, 1998.
  • 7Mese E, Torry D A. An approach for sensorless position estimation for switched reluctance motors using artificial neural networks[J]. IEEE Transaction on Power Electronics, 2002, 17(1): 66-75.
  • 8Soares F, Costa Branco P J. Simulation of a 6/4 switched reluctance motor based on matlab/simulink environment[J]. IEEE Transaction on Aerospace and Electronic Systems, 2001, 37(3): 989-1009.
  • 9Cui Yulong, Wnag Xiang, Liu Chaoying et al. The simulation study of the switched reluctance motor's nonlinearized model[C]. Xi'an:IEEE Proceeding of the Second International Conference on Machine Learning and Cybernetics, 2003.
  • 10Suresh G, Fahimi B, Rahman K M, et al. Inductance based position encoding for sensorless SRM drives[C] 30th Annual IEEE Power Electronics Specialists Conference, Charleston, SC, USA, 1999: 832-837.

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部