摘要
在多组分条件下通过采用悬浮型光催化纳滤膜反应器进行目标污染底物 H 酸的光催化降解效率及反应动力学研究,控制干扰污染物吐氏酸和变色酸浓度分别为5,10,20,25,40mg/L,控制 H 酸浓度100mg/L 恒定不变.实验结果表明,在单组分光催化纳滤膜反应器中,在Ct/C0≥0.7条件下,降解过程遵循L-H 零级(0-12min)与L-H一级(12-20min)的混合动力学模型;在多组分光催化纳滤膜反应器中,随着干扰物浓度的增加,在Ct/C0≥0.7条件下(约0-20min反应时间段)其降解过程均对应地遵循L-H一级反应动力学模型.通过实验进一步证实,H酸光催化降解动力学的改变主要由耦合光催化反应器内底物和光催化剂表面H酸的浓度差异性引起.
The removal efficiencies and degradation kinetics of the target H-acid from multi-component aqueous solutions in suspended photocatalytic nanofiltration membrane reactor were performed, the concentrations of co-existing Tobias acid and Chromotropic acid were set to 5, 10, 20, 25and 40mg/L respectively, while the target H-acid was set to be 100mg/L. The experimental results indicated that, in the single-component reaction system, the photocatalytic degradation kinetics of H-acid obeyed the combined reaction kinetics model of L-H zero-order (about 0-12min) and L-H first-order (about 12-20min) within Ct/C0≥0.7;while it imperatively obeyed the L-H first-order reaction kinetics model (0-20min) in the multi-component system within the same range. The drastic changes in H-acid degradation kinetics were mainly attributed to its substantial concentration differences both in the photocatalytic membrane reactor and on the photocatalyst surface between the single-component and multi-component conditions.
出处
《中国环境科学》
EI
CAS
CSCD
北大核心
2014年第3期658-663,共6页
China Environmental Science
基金
国家自然科学基金资助项目(51208488)
关键词
光催化
膜分离
耦合过程
多组分体系
去除效率
反应动力学
photocatalysis
membrane separation
coupled process
multi-component system
removal efficiencies
degradation kinetics