期刊文献+

应用灰色模糊马尔科夫链预测海河水质变化趋势 被引量:26

Water quality prediction of Haihe River using grey-fuzzy-markov chain model
下载PDF
导出
摘要 灰色 GM(1,1)模型在水质预测中得到了较为广泛的运用,但其存在灰色偏差与抗干扰能力弱的局限性,针对这一问题,将马尔科夫链理论与模糊集合理论引入灰色GM(1,1)预测模型,并应用该模型对海河三岔口断面的DO、CODMn和NH3-N 3项指标2012-2016年的浓度变化趋势进行预测.结果表明,2004-2016年,DO及NH3-N浓度大致呈上升趋势,预计2016年分别可达9.15,1.47mg/L;CODMn浓度呈下降趋势,预计2016年可达3.91mg/L.以2012年的数据做验证,灰色模糊马尔科夫链模型的预测精度最高,可作为科学的水质预测方法. The GM(1,1) model has been widely used in the prediction of water quality. But it had the disadvantages of grey bias and weak anti-jamming capability. To solve this problem, the markov chain theory and fuzzy classification were introduced into the grey forecasting model and a new method named the Grey-Fuzzy-Markov Chain Model was proposed. In this paper, the tendency changes of DO,CODMn and NH3-N’s concentration were predicted in Haihe River from 2012 to 2016. The results showed that from 2004 to 2016 the concentration of DO and NH3-N would increase to 9.15 and 1.47mg/L respectively in 2016. Meanwhile the CODMn would decrease to 3.91mg/L in 2016. The concentration of DO,CODMn and NH3-N in 2012 were forecasted to check the precision of this model. The precision of the Grey-Fuzzy-Markov model was better than the GM(1,1) model and it would be a scientific method for the prediction of water quality.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2014年第3期810-816,共7页 China Environmental Science
基金 天津市自然科学基金重点资助项目(07JCZDJC02100)
关键词 GM(1 1)模型 模糊分类 马尔科夫模型 GM(1,1) model fuzzy classification Markov Mode
  • 相关文献

参考文献21

二级参考文献168

共引文献301

同被引文献294

引证文献26

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部