期刊文献+

一类超线性Hill型对称碰撞方程的周期运动 被引量:1

The periodic motions of a class of symmetric superlinear Hill's impact equations
原文传递
导出
摘要 本文考虑一类超线性Hill型对称碰撞方程的对称碰撞周期解的存在性、重性和分布问题.通过坐标变换的方法把碰撞相平面转化为全平面进行研究,在一类关于时间映射的超线性条件下证明有外力方程无穷多个对称碰撞调和解和对称碰撞次调和解的存在性;同时研究在没有外力时方程的对称碰撞周期解的稠密性分布.本文还给出对称碰撞方程对称碰撞周期解存在的充分条件. We are concerned with the existence, multiplicity and distribution of the even and periodic solutions of a class of symmetric superlinear Hill's equations with impact. We transform the impact phase-plane into a whole phase-plane by a coordinate transformation and, we prove the existence of infinite numbers of symmetric harmonic and subharmonic solutions of forced impactors as well as the densely distribution of symmetric subharmonic solutions of the unforced equations under some superlinear assumption about time-mapping. We also develop a lemma on sufficient condition for symmetric periodic solutions to symmetric second order equations.
作者 王超
出处 《中国科学:数学》 CSCD 北大核心 2014年第3期235-248,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11301106和11226130) 江苏省高校自然科学基金(批准号:09KJD110005)资助项目
关键词 对称碰撞方程 权函数 对称碰撞周期解 时间映射 POINCARE映射 symmetric impact equations, weight functions symmetric periodic bouncing solutions time-map Poincar map
  • 相关文献

参考文献20

  • 1Lazer A, Mckenna P. Periodic bounding for a forced linear spring with obstacle. Differential Integral Equations, 1992,5: 165-172.
  • 2Qian D. Large amplitude periodic bouncing for impact oscillators with damping. Proc Amer Math Soc, 2005, 133:1797-1804.
  • 3Bonheune D, Fabry C. Periodic motions in impact oscillators with perfectly elastic bouncing. Nonlinearity, 2002, 15:1281-1298.
  • 4Qian D, Torres P. Bouncing solutions of an equation with attractive singularity. Proc Roy Soc Edinburgh Sect A,2004, 134: 201-213.
  • 5钱定边,孙西瀅.渐近线性碰撞振子的不变环面[J].中国科学(A辑),2006,36(4):418-437. 被引量:2
  • 6Herrera A, Torres P. Periodic solutions and chaotic dynamics in forced impact oscillators. SIAM J Appl Dyn Syst,2013, 12: 383-414.
  • 7Hale J. Ordinary differential equation. New York: Robert E Krieger Publishing Campany Huntingto, 1980.
  • 8Papini D, Zanolin F. Differential equations with indefinite weight: Boundary value problems and qualitative properties of the solutions. Rend Sem Mat Univ Pol Torino, 2002, 60: 265-295.
  • 9Papini D. Boundary value problems for second order differential equations with superlinear terms: A topological approach. PhD Thesis. Trrieste: Scuola Internazionale Superiore di Studi Avanzati, 2000.
  • 10Papini D, Zanoni F. A topological approach to superlinear indefinite boundary-value problem. Topol Methods Nonlinear Anal, 2000, 15: 203-233.

二级参考文献59

  • 1QIAN Dingbian & SUN Xiying School of Mathematical Sciences, Suzhou University, Suzhou 215006, China,Laboratory of Mathematics for Nonlinear Sciences, Fudan University, Shanghai 200433, China.Invariant tori for asymptotically linear impact oscillators[J].Science China Mathematics,2006,49(5):669-687. 被引量:5
  • 2钱定边,孙西瀅.渐近线性碰撞振子的不变环面[J].中国科学(A辑),2006,36(4):418-437. 被引量:2
  • 3Mawhin J., Wilcm M., Critical Point Theory and Hamiltonian Systems, New York: Springer-Verlag, 1989.
  • 4Jiang M., Periodic solutions of second order differential equations with an obstacle, Nonlinearity, 2006, 19: 1165-1183.
  • 5Qian D., Infinity of subharmonies for asymmetric Duffing equations with Lazer-Leach-Dancer condition, J. Differential Equations, 2001, 171: 233-250.
  • 6Ding T., Zanolin F., Time-maps for thesolvability of periodically perturbed nonlinear Duffing equations, Nonlinear Analysis TMA, 1991, 17: 635-653.
  • 7Ding T., Zanolin F., Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations, 1992, 97: 328-378.
  • 8Ding T., Iannacci R., Zanolin F., Existence and multiplicity results for periodic solutions of semilinear Duffing equations, J. Differential Equations, 1993, 105: 364-409.
  • 9Ding W. Y., The fixed point of twist map and the periodic solutions of ordinary differential equations, Acta Mathematiea Siniea, Chinese Series, 1982, 25(2): 227-235.
  • 10Hartman P., On boundary value problems for superlinear second order differential equations, J. Differential Equations, 1977, 26: 37-53.

共引文献4

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部