摘要
令K是一个内部(记作intK)包含原点o的凸体,bdK为其边界,m为覆盖K所需的intK的平移的最小个数.本文证明,存在正实数η和含于η(bdK)的m元点集C1使得C1+int K覆盖K;存在正实数η′、实数γ∈(0,1)和含于η′(bd K)的m元点集C2使得C2+γK覆盖K.基于这两个事实,本文得到关于凸体覆盖的Hadwiger猜想的两个等价形式.本文还引入一个可以替代宗传明提出的攻克Hadwiger猜想的数量方案中的γm(K)的新泛函.
Let K be a convex body containing the origin o in its interior int K, whose boundary is denoted by bd K, and m be the least number of translations of int K needed to cover K. We show that there exist a positive number η and a set C1 of rn points from η(bd K) such that C1 + int K covers K. Similarly, there exist a positive number η', a number γ∈ (0, 1), and a set C2 ofrn points from η'(bdK) such that C2 +γK covers K. These facts yield two equivalent forms of Hadwiger's well-known covering conjecture. We also introduce a functional that can take the place of γm(K) in Zong's quantitative program to attack Hadwiger's covering conjecture.
出处
《中国科学:数学》
CSCD
北大核心
2014年第3期275-285,共11页
Scientia Sinica:Mathematica
基金
国家重点基础研究发展计划(973计划)(批准号:2013CB834201)
国家自然科学基金(批准号:11371114)
中国博士后科学基金(批准号:2012M520097和2013T60019)
黑龙江省教育厅海外学人(批准号:1251H013)
教育部留学回国人员启动基金资助项目
关键词
凸体
凸体覆盖
Hadwiger
猜想
convex body, covering of convex bodies, Hadwiger's conjecture