期刊文献+

多层感知器模型互反奇异性区域学习动态的理论分析 被引量:1

Theoretical analysis of learning dynamics near the opposite singularities in multilayer perceptrons
下载PDF
导出
摘要 多层感知器神经网络(MLPs)的学习过程经常发生一些奇异性行为,容易陷入平坦区,这都和MLPs的参数空间中存在的奇异性区域有直接关系.当MLPs的两个隐节点的权值接近互反时,置换对称性会导致学习困难.对MLPs的互反奇异性区域附近的学习动态进行分析.本文首先得到了平均学习方程的解析表达式,然后给出了互反奇异性区域附近的理论学习轨迹,并通过数值方法得到了其附近的实际学习轨迹.通过仿真实验,分别观察了MLPs的平均学习动态,批处理学习动态和在线学习动态,并进行了比较分析. Owing to the existence of singularities in the parameter space,multilayer perceptrons (MLPs) may behave extremely slowly in learning or even be trapped in plateaus.When weights of two hidden units are nearly mutually opposite,the learning process will encounter difficulties because of the permutation symmetry.We investigate the learning dynamics of MLPs near opposite singularities,and derive the analytical expressions for averaged learning equations.Then,we obtain the theoretical learning trajectories near the opposite singularities.Furthermore,real learning trajectories near the opposite singularities are also calculated by using numerical methods.In simulations,we study the averaged learning dynamics,the batch mode learning dynamics and the online learning dynamics,respectively.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第2期140-147,共8页 Control Theory & Applications
基金 国家自然科学基金重大项目资助项目(11190015) 国家自然科学基金资助项目(61374006) 高等学校博士学科点专项科研基金资助项目(20100092110020)
关键词 多层感知器 神经网络 学习动态 奇异性 互反 multilayer perceptrons neural networks learning dynamics singularity opposite
  • 相关文献

参考文献17

  • 1WATANABE S. Almost all learning machines are singular [C]//Pro- ceedings of lEEE Symposium on Foundations of Computational In- telligence. Honolulu, HI: IEEE, 2007:383 - 388.
  • 2FUKUMIZU K. A regularity condition of the information matrix of a multilayer perceptron network [J]. Neural Networks, 1996, 9(5): 871 - 879.
  • 3FUKUMIZU K, AMARI S. Local minima and plateaus in hierarchi- cal structure of multilayer perceptrons [J]. Neural Networks, 2000, 13(3): 317 - 327.
  • 4AMARI S, PARK H, OZEKI Z. Singularities affect dynamics of learning in neuromanifolds [J]. Neural Computation, 2006, 18(5): 1007 - 1065.
  • 5SAAD D, SOLLA A. Exact solution for online learning in multilayer neural networks [J]. Physical Review Letters, 1995, 74(21): 4337 - 4340.
  • 6FREEMAN J A S, SAAD D. Dynamics of on-line learning in radial basis function networks [J]. Phisical Review E, 1997, 56(1): 907 - 918.
  • 7AMARI S, NAGAOKA H. Information Geometry [M]. New York: AMS and Oxford University Press, 2000.
  • 8PARK I-t, INOUE M, OKADA M. Online learning dynamics of multilayer perceptrons with unidentifiable parameters [J]. Journal of Physics A: Mathematical and General, 2003, 36(47): 11753 - 11764.
  • 9AMARI S, OZEKI T, COUSSEAU F, et al. Dynamics of learning in hierarchical models-singularity and milnor attractor [C] //Advances in Cognitive Neurodynamics (II). Hangzhou: Springer Netherlands, 2011:3-9.
  • 10魏海坤,李奇,宋文忠.梯度算法下RBF网的参数变化动态[J].控制理论与应用,2007,24(3):356-360. 被引量:13

二级参考文献9

  • 1魏海坤,宋文忠,李奇.非线性系统RBF网在线建模的资源优化网络方法[J].自动化学报,2005,31(6):970-974. 被引量:6
  • 2HAYKIN S.Neural Networks:A Comprehensive Foundation[M].New York,NY:Prentice Hall,1997.
  • 3KARAYIANNIS N,RANDOLPH-GIPS M.On the construction and training of reformulated radial basis function neural networks[J].IEEE Trans Neural Networks,2003,14(4):835-846.
  • 4PLATT J.A resource-allocating network for function interpolation[J].Neural Computation,1991,3(2):213-225.
  • 5YINGWEI L,SUNDARARAJAN N,SARATCHANDRAN P.A sequential learning scheme for function approximation and using minimal radial basis neural networks[J].Neural Computation,1997,9(2):1-18.
  • 6MICCHELLI C.Interpolation of scattered data:distance matrices and conditionally positive definite functions[J].Constructive Approximation,1986,2(1):11-22.
  • 7WEI H,AMARI S.Online learning dynamics of radial basis function neural networks near the singularity[C]//Proc of Int Joint Conf on Neural Networks.New York,USA:IEEE Press,2006:4770-4776.
  • 8AMARI S,PARK H,OZEKI T.Singularities affect dynamics of learning in neuromanifolds[J].Neural Computation,2006,18(5):1007-1065.
  • 9魏海坤,徐嗣鑫,宋文忠.神经网络的泛化理论和泛化方法[J].自动化学报,2001,27(6):806-815. 被引量:97

共引文献12

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部