摘要
针对一类时滞不确定中立型分布参数系统,研究该系统基于线性矩阵不等式方法的稳定性判据.基于线性矩阵不等式(LMI)方法,通过构造一系列适当的李雅普诺夫函数,利用散度定理和矩阵不等式技术,给出了系统是渐近稳定的充分条件.充分条件要求满足两个线性矩阵不等式,而线性矩阵不等式容易利用Matlab中的LMI工具箱进行求解.最后,数值算例验证了该方法的有效性.
Stability criterion for a class of uncertain neutral distributed parameter systems with delays is studied.Based on the linear matrix inequality approach,the sufficient conditions of the systems' asymptotic stability is given by constructing a series of appropriate Lyapunov functions in terms of divergence theorem and matrix inequality technologies.The sufficient conditions need to satisfy two linear matrix inequalities and the linear matrix inequalities can be solved easily by LMI toolbox in Matlab.Finally,a numerical example is given to illustrate the validity of the method.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第4期261-267,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(11201089)
广西自然科学基金(2012GXNSFBA053003)
广西教育厅科技项目(2013YB141)
关键词
中立型分布参数系统
不确定
稳定性
neutral distributed parameter systems
uncertain
stability