期刊文献+

The Product of the Restrained Domination Numbers of a Graph and Its Complement

The Product of the Restrained Domination Numbers of a Graph and Its Complement
原文传递
导出
摘要 Let G=(V,E) be a graph.A set S■V is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S.The restrained domination number of G,denoted γr(G),is the smallest cardinality of a restrained dominating set of G.In this paper,we show that if G is a graph of order n≥4,then γr(G)γr(G)≤2n.We also characterize the graphs achieving the upper bound. Let G=(V,E) be a graph.A set S■V is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S.The restrained domination number of G,denoted γr(G),is the smallest cardinality of a restrained dominating set of G.In this paper,we show that if G is a graph of order n≥4,then γr(G)γr(G)≤2n.We also characterize the graphs achieving the upper bound.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第3期445-452,共8页 数学学报(英文版)
关键词 GRAPH DOMINATION restrained domination Nordhaus-Gaddum upper bound Graph, domination, restrained domination, Nordhaus-Gaddum, upper bound
  • 相关文献

参考文献13

  • 1Dankelmann, P., Day, D., Hattingh, J. H., et al.: On equality in an upper bound for the restrained and total domination numbers of a graph. Discrete Math., 307, 2845-2852 (2007).
  • 2Domke, G. S., Hattingh, J. H., Hedetniemi, S. T., et al.: Restrained domination in graphs. Discrete Math., 203, 61-69 (1999).
  • 3Domke, G. S., Hattingh, J. H., Hedetniemi, S. T., et al.: Restrained domination in trees. Discrete Math., 211, 1-9 (2000).
  • 4Domke, G. S., Hattingh, J. H., Henning, M. A., et al.: Restrained domination in graphs with minimum degree two. J. Combin. Math. Combin. Cornput., 35, 239-254 (2000).
  • 5Hattingh, J. H., Jonck, E., Joubert, E. J., et al.: Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs. Discrete Math., 308, 1080-1087 (2008).
  • 6Hattingh, J. H., Joubert, E. J.: An upper bound for the restrained domination number of a graph with minimum degree at least two in terms of order and minimum degree. Discrete Applied Math., 157, 2846- 2858 (2009).
  • 7Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1997.
  • 8Haynes, T. W., Hedetniemi, S. T., Slater, P. J. (eds): Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1997.
  • 9Jaeger, F., Payan, C.: Relations du type Nordhaus-Gaddum pour le nombre d'absorption d'un simple. C. R. Acad. Sci. Set. A, 274, 728-730 (1972).
  • 10Karami, H., Khodkar, A., Sheikholeslami, S. M., et al.: Inequalities of Nordhaus-Gaddum type for con- nected domination. Graphs Combin., 28, 123-131 (2012).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部