摘要
We characterize the Liouvillian and analytic integrability of the quadratic polynomial vector fields in R2 having an invariant ellipse.More precisely,a quadratic system having an invariant ellipse can be written into the form x=x2+y2-1+y(ax+by+c),y=x(ax+by+c),and the ellipse becomes x2+y2=1.We prove that(i) this quadratic system is analytic integrable if and only if a=0;(ii) if x2+y2=1 is a periodic orbit,then this quadratic system is Liouvillian integrable if and only if x2+y2=1 is not a limit cycle;and(iii) if x2+y2=1 is not a periodic orbit,then this quadratic system is Liouvilian integrable if and only if a=0.
We characterize the Liouvillian and analytic integrability of the quadratic polynomial vector fields in R2 having an invariant ellipse.More precisely,a quadratic system having an invariant ellipse can be written into the form x=x2+y2-1+y(ax+by+c),y=x(ax+by+c),and the ellipse becomes x2+y2=1.We prove that(i) this quadratic system is analytic integrable if and only if a=0;(ii) if x2+y2=1 is a periodic orbit,then this quadratic system is Liouvillian integrable if and only if x2+y2=1 is not a limit cycle;and(iii) if x2+y2=1 is not a periodic orbit,then this quadratic system is Liouvilian integrable if and only if a=0.
基金
partially supported by the MINECO/FEDER(Grant No.MTM2008–03437)
AGAUR(Grant No.2009SGR-410)
ICREA Academia and FP7-PEOPLE-2012-IRSES 316338 and 318999
supported by Portuguese National Funds through FCT-Fundao para a Ciência e a Tecnologia within the project PTDC/MAT/117106/2010 and by CAMGSD