期刊文献+

A Note on Faber Operator 被引量:1

A Note on Faber Operator
原文传递
导出
摘要 For a rectifable Jordan curve Γ with complementary domainsD and D,Anderson conjectured that the Faber operator is a bounded isomorphism between the Besov spaces Bp(1 〈 p 〈 ∞) of analytic functions in the unit disk and in the inner domain D,respectively.We point out that the conjecture is not true in the special case p=2,and show that in this case the Faber operator is a bounded isomorphism if and only if Γ is a quasi-circle. For a rectifable Jordan curve Γ with complementary domainsD and D,Anderson conjectured that the Faber operator is a bounded isomorphism between the Besov spaces Bp(1 〈 p 〈 ∞) of analytic functions in the unit disk and in the inner domain D,respectively.We point out that the conjecture is not true in the special case p=2,and show that in this case the Faber operator is a bounded isomorphism if and only if Γ is a quasi-circle.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第3期499-504,共6页 数学学报(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11071179)
关键词 Faber operator Besov space Grunsky operator Hilbert operator quasi-circle Faber operator, Besov space, Grunsky operator, Hilbert operator, quasi-circle
  • 相关文献

参考文献15

  • 1Ahlfors, L. V.: Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, 1966.
  • 2Andersson, J. E.: On the Degree of Polynomial and Rational Approximation of Holomorphic Functions, Dissertation, Univ. of Goteborg, Goteborg, 1975.
  • 3Anderson, J. M.: The Faber operator. Lecture Notes in Math., 1105, Springer-Verlag, Berlin, 1984, 1-10.
  • 4Anderson, J. M., Clunie, J.: Isomorphisms of the disc algebra and inverse Faber sets. Math. Z., 188, 545-558 (1985).
  • 5Bergman, S., Schiffer, M. M.: Kernal functions and conformal mappings. Compos. Math., 8, 205-249 (1951).
  • 6Duren, P.: Theory of Hp Spaces, Academic Press, New York, 1970.
  • 7Frerick, L., Muller, J.: Polynomial approximation and maximal convergence on Faber sets. Constr. Approx., 10, 427-438 (1994).
  • 8Gaier, D.: The Faber operator and its boundedness. J. Approx. Theory, 101, 265-277 (1999).
  • 9Garnett, J. B,: Bounded Analytic Functions, Academic Press, New York, 1981.
  • 10Kovari, T., Pommerenke, Ch.: On Faber polynomials and Faber expansions. Math. Z., 99, 193-206 (1967).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部