期刊文献+

对图像处理中ROF全变分模型的两种算法的比较研究 被引量:2

Comparative Research on Two Kinds of Algorithms of ROF Total Variational Model in Image Processing
下载PDF
导出
摘要 全变分图像去噪问题的本质是一类基于全变分的约束极小化模型.其中最经典的模型是由Rudin-Osher-Fatemi提出的ROF模型[1].在这一模型中,正则化参数的选取直接影响到图像恢复的效果,当给定一个适当的正则化参数来平衡数据拟合和正则解时,可以得到十分理想的结论.在过去的二十年中,通过对这一模型的研究,产生了各种有效的算法.不同的算法通过调节正则化参数,都在不同程度上达到了去噪的目的.本文中,应用两种算法:梯度下降法和分裂Bregman算法,对带噪声图像进行了数值仿真和比较,结果显示分裂Bregman算法能够达到更好地去噪效果. The variational problem of image denoising is the nature of a class of constrained minimization based on total variational model. The best and most influential example is the Rudin- Osher-Fatmi(ROF) total-variation-based image denoising model. The selection of regularization parameter directly affects the effect of image restoration. Appropriate regularization parameter to balance the data fitting and regular solution can obtain ideal results. In the past twenty years, through the study of this model, various effective algorithms have been proposed. By adjusting the regularization parameter, different algorithms meet the purpose of denoising in different degrees. In this paper, we apply two kinds of algorithms: split Bregman algorithm and the gradient descent method to do numerical simulation and compare them. The results show that the split Bregman algorithm can achieve better denoising effect.
出处 《中央民族大学学报(自然科学版)》 2014年第1期93-96,共4页 Journal of Minzu University of China(Natural Sciences Edition)
关键词 图像去噪 全变分 约束优化 正则化 正则解 Image denoising Total variational Constrained optimization Regularization Regular solution
  • 相关文献

参考文献6

  • 1LEONID RUDIN. Stanley Osher and Emad Fatemi. Nonlinear Total Variation based Noise Removal Algorithm [ J ]. Physica D. , 1992, (60) :259 - 268.
  • 2G AUBERT, P KORNPROBST. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations [ M ]. New York : 2nded. , Springer, 2006.
  • 3A MARQUINU, STANLEY OSHER. Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal[ J]. SIAM J. Comput ,Sei. , 2000, (22) : 387 -405.
  • 4C R VOGEL, M E OMAN. Iterative methods for total variation denoising[ J]. SIAM J. Comput. ,Sci. ,1996, (17) : 227 -238.
  • 5JIAN-FENG CAI, STANLEY OSHER, ZUOWEI SHEN. Split Bregman Methods and Frame based Image Restoration. Muhiscale Modeling and Simulation [ J ]. SIAM J. Imaging Sci. , 2009, (8) :337 - 369.
  • 6TOM GOLDSTEIN, STanLEY OSHER. The Split Bregman Method for L1 Regularized Problems[ J]. SIAM J. Imaging Sci., 2009, (2) :323 - 343.

同被引文献15

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部