期刊文献+

如何解答圆锥曲线的最值问题

原文传递
导出
摘要 策略1:抓住图形特点求最值 例1已知圆C1:(x-2)^2+(y-3)^2=-1,圆C2:(x-3)2+(y-4)^2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为A.5√2-4 B.√17-1 C.6-2√2 D.√17.
作者 谢品球
出处 《高中生(高考)》 2014年第3期28-29,共2页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部