期刊文献+

Friction anisotropy dependence on lattice orientation of graphene 被引量:4

Friction anisotropy dependence on lattice orientation of graphene
原文传递
导出
摘要 The observation of friction anisotropy on graphene by friction measurement at atomic scale has been reported in this paper.Atomic-scale friction measurement revealed friction anisotropy with a periodicity of 60°,which is consistent with the hexagonal periodicity of the graphene.Both experiments and theory show that the value of the friction force is related to the graphene lattice orientation,and the friction force along armchair orientation is also larger than the one along zigzag orientation.These results will play a critical role in the use of graphene to manufacture nanoscale devices. The observation of friction anisotropy on graphene by friction measurement at atomic scale has been reported in this paper.Atomic-scale friction measurement revealed friction anisotropy with a periodicity of 60°,which is consistent with the hexagonal periodicity of the graphene.Both experiments and theory show that the value of the friction force is related to the graphene lattice orientation,and the friction force along armchair orientation is also larger than the one along zigzag orientation.These results will play a critical role in the use of graphene to manufacture nanoscale devices.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第4期663-667,共5页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National High Technology Research and Development Program of China(Grant No.2009AA03Z316) the National Natural Science Foundation of China(Grant Nos.60904095,51050110445 and 61175103) the CAS FEA International Partnership Program for Creative Research Teams
关键词 GRAPHENE friction anisotropic lattice orientation 各向异性 摩擦力 石墨 晶格 原子尺度 测定结果 纳米器件 周期性
  • 相关文献

参考文献37

  • 1Ko J S, Gellman A J. Friction anisotropy at Ni (100)/Ni (100) interfaces. Langmuir, 2000, 16: 8343-8351.
  • 2Kwaka M, Shindo H. Frictional force microscopic detection of frictional asymmetry and anisotropy at (1014) surface of calcite. Phys Chem Chem Phys, 2004, 6: 129-133.
  • 3Shindo H, Namai Y. Frictional force microscopic observation of anisotropy at corrugated CaSO4 (001) surface. Phys Chem Chem Phys, 2003, 5: 616-619.
  • 4Park J Y, Ogletree D F, Salmeron M, et al. High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science, 2005, 309: 1354-1356.
  • 5Lucas M, Zhang X H, Palaci I, et al. Hindered rolling and friction anisotropy in supported carbon nanotubes. Nat Mater, 2009, 8: 876-881.
  • 6Mancinelli C M, Gellman A J. Friction anisotropy at Pd (100)/Pd (100) interfaces. Langmuir, 2004, 20: 1680-1687.
  • 7Li X L, Wang X R, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319: 1229- 1232.
  • 8Wang X R, Ouyang Y J, Li X L, et al. Room-temperature all-semi- conducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett, 2008, 100: 206803.
  • 9Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327: 662.
  • 10Grosse K L, Bae M H, Lian F, et al. Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat Nanotechnol, 2011, 6: 287-390.

同被引文献7

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部