期刊文献+

Ostrowski型不等式的伙伴的加权推广 被引量:2

A Weighted Generalization of Some Companions of the Ostrowski-type Inequality
下载PDF
导出
摘要 通过建立二阶可微函数的积分恒等式,对于具有绝对连续导函数的函数,给出了Ostrowski型不等式的伙伴的一个加权推广. This paper derives a general integral identity for twice differentiable mappings, and estab- lishes a weighted generalization of some companions of Ostrowski - type inequality for functions whose derivatives are absolutely continuous.
出处 《湖州师范学院学报》 2014年第2期16-22,共7页 Journal of Huzhou University
关键词 Ostrowski型不等式 二阶可微函数 梯形不等式 中点不等式 Ostrowski- type inequality twice differentiable mappings trapezoid type inequality midpoint inequality
  • 相关文献

参考文献1

  • 1Liu Zheng.Some companions of an Ostrowski type inequality and applicationsl-J].J Inequal Pure Appl Math,2009,10(2):52.

同被引文献16

  • 1Hudzik H, Mailgranda L.Some remarks on s - convex functions[J].Aequationes Math, 1994(48) : 100 - 111.
  • 2Dragmir S S, Fitzpatrick S.The Hadamard's inequality for s -convex functions in the second sense[J].Demonstratio Math,1999,32(4) :687 - 696.
  • 3Ostrowski A.Ober die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert[J].Comment Math Helv,1938,10(1) :226 - 227.
  • 4Liu Z.Some companions of an Ostrowski type inequality and applications[J].J Inequal Pure and Appl Math,2009,10(2):52.
  • 5Ozdemir M E,Ardci M A.Some companions of Ostrowski type inequality for s - convex and s - concave functions with applications[J/OL].arXiv:1208.2573v2[math.FA]13 Aug 2012.
  • 6Sarikaya M Z,Saglam A, Yildirim H.New inequalities of Hermite- Hadamard type for functions whose second deriva- tives absolute values are convex and quasi- convexEJ/OL].arXiv: 1005.0451vl[math.CA]4 May 2010.
  • 7Godunova E K,Levin V I.Neravenstva dlja funkcii irokogo klassa,soderzaego vypuklye,monotonnye I nekotorye drugie vidy funkcii[C]//Vyislitel Mat i Mat Fiz Mezvuzov Sb Nau Trudov,MGPI,Moskva,1985:138-142.
  • 8Hudzik H,Maligranda L.Some remarks on s-convex functions[J].Aequationes Math,1994,48:100-111.
  • 9Dragomir S S,Fitzpatrick S.The Hadamard's inequality for s-convex functions in the second sense[J].Dem Onstratio Math,1999,32(4):687-696.
  • 10Kirmaci U S,et al.Hadamard-type inequalities for s-convex functions[J].Appl Math Comp,2007,193:26-35.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部