期刊文献+

基于FDFD方法周期结构的薄膜太阳能电池特性 被引量:4

Thin-film Solar Cell's Characteristic with Periodic Structure Based on FDFD method
下载PDF
导出
摘要 利用非均匀媒质界面等效参量提取方案结合频域有限差分方法对周期结构薄膜太阳能电池的光学特性进行了数值分析及机理探究.结合等离子体共振条件,研究了两种设计结构的反射、传输、吸收特性及场分布特性,结果表明在低频点,介质和银分界面的场强明显增强,吸收明显增大.探讨了增强因子与结构、入射波长及入射角度间的关系,并分析了其内在的物理机理.结果表明,增强因子在低频时较大且随入射角度增大而增大,最大可达5.7. Using the new inhomogeneous medium interface equivalent parameter scheme combined with the finite-difference frequency-domain method, numerical analysis on mechanism of the optical properties of the thin film solar cell with periodic structure was presented. The plasmon resonance condition was used to study the reflection, the transmission, the absorption characteristics, and the distribution of total field. In the low frequenee point, the enhancement of the total field is obviousat the interface of the medium layer and the Ag layer, and the absorption increases significantly. Furthermore, the relationship between the enhancement factor, the structure, the incident wavelength and the angle of incidence was discussed, and its intrinsic physical mechanism was also analyzed. The enhancement factor is very large at low frequency and increases with the enhancement of the incident angle. The results show that the enhancement factor can increaseto 5.7. The proposed research work can provide a relevant theory and technical reference for the design and optimization of the actual organic thin-film solar cells.
出处 《光子学报》 EI CAS CSCD 北大核心 2014年第1期62-67,共6页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.60931002,61101064,51277001)、安徽省杰出自然科学基金(No.1108085J01)、安徽省高校自然科学基金(Nos.KJ2011A002,KJ2011A242)、教育部新世纪优秀人才基金(No.NCET-12-0596)和教育部博士点基金(No.20123401110009)资助
关键词 频域有限差分方法 薄膜太阳能电池 等离子体效应 斜入射 Finite-Difference Frequency-Domain (FDFD) Thin-film solar cell Plasma effect Obliqueincidence
  • 相关文献

参考文献14

  • 1ZHC)U Wei-dong. MENG Tao. LI Chen, et al. Microst ructured surface design for omnidirectional lnlireflection coatings on sober cells[J]. Journal of Applied Physics. 2007. 102(10): 103-105.
  • 2CHOPRA K L. PAUISON P D. DUTTA V. Thin-fihn solar ceils: An overview[J]. progress In Phot.vollaics: Reseurch .lnd Applications. 2001. 12(2-3): 69- 92.
  • 3ZENG 1: Y1 Y, HONC C. et al. Efficiency enhancement in Si solar cells by textured photonic cryslal back reflector [J]. Applied Physics Letters. 2006, 89(11): 111-111.
  • 4HAASE C, STIEBIG H. Thin-film silicon solar cells wilh efficient periodic light Irapping texture[J]. Applied Physics l.etters. 2007, 91(6): 06-1 116.
  • 5ZIA R. SEI.KER M D. cATRYSSE P B. et al. Geometries and materials for subwavelenglh surface phsmon nmdes[J]. Journal of the Optical Society of America ., 2001, 21(12) : 21 12-211 6.
  • 6DITLBACHER H. KRENN J R. FEI,IDJ N, et al. Fluoreseence imaging nl surface plasmon lields[J], Applied Physics l.etters, 2002, 811(.3): 101-406.
  • 7RAETHER H. Surface plasmons on smooth and rough surfaces and on gralings[M]. Berlin: Springer Verlag, 1088.
  • 8WANG C C D, CHPOY W C H, DUAN Chun-hui, et al, Optical and cleclrical effects of gold nanoparticles in lhe active layer of polymer solar cells [J], Jourmd of Materiuls Chemistrv, 20110 22:1206- 1211.
  • 9SUN Chen, LI Chuan-hao, SHI Rui ying, et al. A study ot7 in171uences o17 metal nanoparticles on absorbing efficiency of organic solar cells[J]. Acta Photonica Sinica, 2012, 41(11) 1335-1341.
  • 10QIU M, HES L. A nonorthogonal finite-difference time- domain method for computing the band structure o{ a two- dimensional photonic crystal with dielectric and metallic inclusions[J]. Journal of Applied Physics, 2000, 87 (12) : 8268-8275.

同被引文献34

  • 1杨光杰,孔凡敏,梅良模.金属光子晶体禁带研究[J].光子学报,2007,36(10):1821-1823. 被引量:7
  • 2TAFLOVE A, HAGNESS S H. Computational electrodynamics: the finite-difference time-domain method [M]. London: ArtechHouse, 2000: 1-10.
  • 3HARMS P, MITTRA R, KO W. Implementation of the periodic boundary condition in the finite-difference time domain algorithm for FSS structures[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(9): 1317 -1324.
  • 4AMINIAN A, SAMII Y R. Spectral FDTD: A novel technique for the analysis of oblique incident plane wave on periodic structures[J]. IEEE Transactions on Antennas and Propagation, 2006, $4(6) : 1818-1825.
  • 5VALUEV I, DEINEGA A, BELOUSOV S. Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method[J]. Optics Letters, 2008, 33(13): 1491-1493.
  • 6VALUEV I, DEINEGA A, BELOUSOV S. Implementation of the iterative finite-difference time-domaln technique for simulation of periodic structures at oblique incidence [J]. Computer Physics Communications, 2014, 185 : 1273 -1281.
  • 7FARAHAT N, MITTRA R. Analysis of frequency selective surfaces using the finite difference time domain method[J]. IEEE Transactions on Antennas and Propagation, 2002, 2 (8) : 568-571.
  • 8DEINEGA A, VALUEV L Subpicel smoothing for conductive and dispersive media in the FDTD method[J]. Optics Letters, 2007, 32(23) : 3429 3431.
  • 9DEINEGA A, JOHN S. Effective optical response of silicon to sunlight in the finite difference time-domain raethod[J]. Optics Letters, 2012, 37(1): 112- 114.
  • 10ZHAO Qian, ZHOU Ji, ZHANG Fu li, et al. Mie resonance-based dielectric metamaterials[J]. Materialstoday, 2009, 12(9): 60- 69.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部