摘要
This paper proposes a selfsimilar local neurofuzzy (SSLNF) model with mutual informati onbased input selection algorithm for the shortterm electricity demand forecasting. The proposed self similar model is composed of a number of local models, each being a local linear neurofuzzy (LLNF) model, and their associated validity functions and can be interpreted itself as an LLNF model. The proposed model is trained by a nested local liner model tree (NLOLIMOT) learning algorithm which partitions the input space into axisorthogonal subdomains and then fits an LLNF model and its associated validity function on each subdomain. Furthermore, the proposed approach allows different input spaces for rule premises (validity functions) and consequents (local models). This appealing property is employed to assign the candidate input variables (i.e., previous load and temperature) which influence shortterm electricity demand in linear and nonlinear ways to local models and validity functions, respectively. Numerical results from shortterm load forecasting in the New England in 2002 demonstrated the accuracy of the SSLNF model for the STLF applications.