期刊文献+

A SELF-SIMILAR LOCAL NEURO-FUZZY MODEL FOR SHORT-TERM DEMAND FORECASTING 被引量:2

A SELF-SIMILAR LOCAL NEURO-FUZZY MODEL FOR SHORT-TERM DEMAND FORECASTING
原文传递
导出
摘要 This paper proposes a selfsimilar local neurofuzzy (SSLNF) model with mutual informati onbased input selection algorithm for the shortterm electricity demand forecasting. The proposed self similar model is composed of a number of local models, each being a local linear neurofuzzy (LLNF) model, and their associated validity functions and can be interpreted itself as an LLNF model. The proposed model is trained by a nested local liner model tree (NLOLIMOT) learning algorithm which partitions the input space into axisorthogonal subdomains and then fits an LLNF model and its associated validity function on each subdomain. Furthermore, the proposed approach allows different input spaces for rule premises (validity functions) and consequents (local models). This appealing property is employed to assign the candidate input variables (i.e., previous load and temperature) which influence shortterm electricity demand in linear and nonlinear ways to local models and validity functions, respectively. Numerical results from shortterm load forecasting in the New England in 2002 demonstrated the accuracy of the SSLNF model for the STLF applications.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期3-20,共18页 系统科学与复杂性学报(英文版)
关键词 Mutual information self-similar local neuro-fuzzy model short-term load forecasting. 神经模糊模型 短期负荷预测 电力需求预测 自相似模型 输入变量 局部线性 选择算法 局部模型
  • 相关文献

参考文献35

  • 1Wang Y, Xia Q, and Kang C, Secondary forecasting based on deviation analysis for short-term load forecasting, IEEE Trans. Power Syst., 2011, 26(2): 500-507.
  • 2Chen Y, Luh P B, Guan C, Zhao Y, Michel L D, Coolbeth M A, Friedland P B, and Rourke S J, Short-term load forecasting: Similar day-based wavelet neural networks, IEEE Trans. Power Syst., 2010, 25(1): 322-330.
  • 3Liu C W, Chang C S, and Su M C, Neuro fuzzy networks for voltage security monitoring based on synchronized phasor measurement, IEEE Trans. Power Syst., 1998, 13(2): 326-332.
  • 4Hanmandlu M and Chauhan B K, Load forecasting using hybrid models, IEEE Trans. Power Syst., 2011, 26(1): 20 29.
  • 5Taylor J W, Short-term load forecasting methods: An evaluation based on European data, IEEE Trans. Power Syst., 2007, 22(4): 2213-2219.
  • 6Amjady N, Short-term hourly load forecasting using time-series modeling with peak load estima- tion capability, IEEE Trans. Power Syst., 2001, 16(3): 498 505.
  • 7Moghram I and Rehman S, Analysis and evaluation of five short term load forecasting techniques, IEEE Trans. Power Syst., 1989, 4(4): 1484-1491.
  • 8Bakirtzis A G, Petridis V, Kiartzis S J, Alexiadis M C, and Maissis A H, A neural network short term load forecasting model for the Greekpower system, IEEE Trans. Power Syst., 1996, 11(2): 858-863.
  • 9Ho K L, Hsu Y Y, and Yang C C, Short term load forecasting using a multilayer neural network with an adaptive learning algorithm, IEEE Trans. Power Syst., 1992, 7(1): 141-149.
  • 10Khotanzad A, Zhou E, and Elragal H, A neuro fuzzy approach to short term load forecasting in price sensitive environment, IEEE Trans. Power Syst., 2002, 17(4): 1273-1282.

同被引文献6

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部