期刊文献+

单目视觉自然路标辅助的移动机器人定位方法 被引量:13

Assistance localization method for mobile robot based on monocular natural visual landmarks
下载PDF
导出
摘要 针对很多场合下GPS信号会受到遮挡而无法使用,导致机器人定位精度下降很快的问题,提出一种基于单目视觉自然路标辅助的机器人绝对定位方法.在导航环境中的若干位置预先建立视觉路标库.机器人在利用惯导(INS)定位过程中,同时对采集到的单目图像和库中的视觉路标进行匹配.建立基于全局特征信息(GIST)和快速鲁棒算子(SURF)局部特征相结合的在线图像快速匹配框架,同时结合基于单目视觉的运动估计算法修正车体航向.最后利用卡尔曼滤波将视觉路标匹配获得的定位信息和INS有效地融合起来.结果表明,该方法有效地提高在GPS受限情况下惯性导航定位的精度和鲁棒性. In many occasions GPS signal may be blocked, leading the quick drop of the positioning accuracy for the robot. We present an assistance localization method for mobile robot based on the monocular natural visual landmarks. A landmark library containing the images from several scenes of the environment was set up before navigation. Each acquired image was matched with the visual landmarks while navigation, where INS positioning was used for rough localization. A fast image matching framework based on combining usage of GIST global features and SURF local features was presented. The Orientation was corrected from Structure From Motion algorithm as well. Finally a Kalman Filter was used to fuse the localization results from visual landmarks and the INS method. The results show that the proposed method improves the positioning accuracy under GPS blocked area and makes the system more robust.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第2期285-291,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金项目(61071219)
关键词 惯性导航 视觉自然路标 单目 绝对定位 图像匹配 航向修正 KALMAN滤波 INS Monocular visual landmark image matching; yaw correction; Kalman Filter
  • 相关文献

参考文献20

  • 1NISTER D, NARODITSKY O, BERGEN J. Visual odometry [C]//Pro-ceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Rec- ognition. Washington, DC:[s.n.], 2004: 652-659.
  • 2SCARAMUZZA D, SIEGWART R. Appearance-guided monocul-ar omnidirectional visual odometry for outdoor ground veh-icles [J]. IEEE Transactions on Robotics, 2008,24(5) : 1015 - 1026.
  • 3BAILEY T. Mobile robot localization and mapping in exte-nsive outdoor environments[D]. Sydney, Austral- ia: Universityof Sydney,2002.
  • 4FRESE U, HIRZINGER G. Simultaneous localization and mapping a discussion [C]//ln Proceedings of the IJ- CAI Wor-kshop on Reasoning with Uncertainty in Robot- ics. Seattle:is. n. ]2001 : 17 - 26.
  • 5HUSTER A, ROCK S. Relative position sensing by fu- sing monocular vision and inertial rate sensors [C]// in Proceedi-ngs of llth International Conference Advanced Ro- botics. Coimbra, Portugal:is. n. ]. 2003:1562 - 1567.
  • 6STRELOW D, SINGH S. Motion estimation from im- age and inertial measurements [J]. International Journal of Robotics Research, 2004,23 (12) : 1157 - 1195.
  • 7CUMMINNS M, NEWMAN P. FAB-MAP: probabilis- tic loca-lization and mapping in the space of appearance [J]. Inte-rnational Journal of Robotics Research, 2008, 27(6) : 647 - 665.
  • 8IKEDA K, TANAKA K. Visual robot localization usingco-mpact binary landmarks [ C] // Proceedings of the IEEE ICRA. Florida: Es. n3. 2010:4397 -4403.
  • 9QUDDUS M A, OCHIENG W Y, NOLAND R B. Cur rent ma-pmatching algorithms [or transport applica tions.. State of theart and future research directions [J] Transportation Researc-h Part C, 2007,15(5) : 312 - 328.
  • 10PARK C, KIM S, PARK S K. Vision-based global lo- cal-ization for mobile robots with hybrid maps of ob- jects and spatial layouts [J]. Information Science, 2009,179 (24) : 4174 - 4198.

同被引文献104

引证文献13

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部