摘要
We establish a central limit theorem for a branching Brownian motion with random immigration under the annealed law,where the immigration is determined by another branching Brownian motion.The limit is a Gaussian random measure and the normalization is t3/4for d=3 and t1/2for d≥4,where in the critical dimension d=4 both the immigration and the branching Brownian motion itself make contributions to the covariance of the limit.
We establish a central limit theorem for a branching Brownian motion with random immigration under the annealed law,where the immigration is determined by another branching Brownian motion.The limit is a Gaussian random measure and the normalization is t3/4for d=3 and t1/2for d≥4,where in the critical dimension d=4 both the immigration and the branching Brownian motion itself make contributions to the covariance of the limit.
基金
Supported by National Natural Science Foundation of China(Grant Nos.11131003 and 11201068)
985-Project