期刊文献+

Complete Convergence and Complete Moment Convergence for Martingale Diference Sequence 被引量:8

Complete Convergence and Complete Moment Convergence for Martingale Diference Sequence
原文传递
导出
摘要 In the paper,we investigate the complete convergence and complete moment convergence for the maximal partial sum of martingale diference sequence.Especially,we get the Baum–Katz-type Theorem and Hsu–Robbins-type Theorem for martingale diference sequence.As an application,a strong law of large numbers for martingale diference sequence is obtained. In the paper,we investigate the complete convergence and complete moment convergence for the maximal partial sum of martingale diference sequence.Especially,we get the Baum–Katz-type Theorem and Hsu–Robbins-type Theorem for martingale diference sequence.As an application,a strong law of large numbers for martingale diference sequence is obtained.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第1期119-132,共14页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11201001,11171001,11126176 and 11226207) Natural Science Foundation of Anhui Province(Grant Nos.1208085QA03 and 1308085QA03) Applied Teaching Model Curriculum of Anhui University(Grant No.XJYYXKC04) Students Innovative Training Project of Anhui University(Grant No.201310357004) Doctoral Research Start-up Funds Projects of Anhui University and the Students Science Research Training Program of Anhui University(Grant No.KYXL2012007)
关键词 Martingale diference sequence complete convergence complete moment convergence Baum–Katz-type theorem Martingale diference sequence complete convergence complete moment convergence Baum–Katz-type theorem
  • 相关文献

参考文献13

  • 1Bai, Z. D., Su, C.: The complete convergence for partial sums of i.i.d. random variables. Sci. China Ser. A, 28(12), 1261-1277 (1985).
  • 2Baum, L. E., Katz, M.: Convergence rates in the law of large numbers. Trans. Amer. Math. Soc., 120(1), 108-123 (1965).
  • 3Erdos, P.: On a theorem of Hsu and Robbins. Ann. Math. Statist., 20(2), 286-291 (1949).
  • 4Ghosal, S., Chandra, T. K.: Complete convergence of martingale arrays. J. Theoret. Probab., 11(3),621- 631 (1998).
  • 5Hall, P., Heyde, C. C.: Martingale Limit Theory and Its Application, Academic Press, New York, 1980.
  • 6Hsu, P. L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA, 33(2), 25-31 (1947).
  • 7Stoica, G.: A note on the rate of convergence in the strong law of large numbers for martingales. J. Math. Anal. Appl., 381(2), 910-913 (2011).
  • 8Stoica, G.: Baum-Katz-Nagaev type results for martingales. J. Math. Anal. Appl., 336(2), 1489-1492 (2007).
  • 9Sung, S. H.: Moment inequalities and complete moment convergence. J. Inequal. Appl., 2009, Article ID 271265, 14 pages (2009).
  • 10WU, Q. Y.: A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables. J. Inequal. Appl., 2012, 10 pages (2012).

同被引文献27

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部