期刊文献+

Total Duration of Negative Surplus for a Brownian Motion Risk Model with Interest

Total Duration of Negative Surplus for a Brownian Motion Risk Model with Interest
原文传递
导出
摘要 In this paper,we consider the Brownian motion risk model with interest.The Laplace transform of the first exit time from the upper barrier before hitting the lower barrier is obtained.Using the obtained result and exploiting the limitation idea,we derive the Laplace transform of total duration of negative surplus. In this paper,we consider the Brownian motion risk model with interest.The Laplace transform of the first exit time from the upper barrier before hitting the lower barrier is obtained.Using the obtained result and exploiting the limitation idea,we derive the Laplace transform of total duration of negative surplus.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第1期163-168,共6页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11226204,10901086 and 11226203) the Doctoral Fund Program of Tianjin Normal University(Grant No.52XB1204)
关键词 First exit time confluent hypergeometric function negative surplus ruin probability First exit time confluent hypergeometric function negative surplus ruin probability
  • 相关文献

参考文献13

  • 1Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, United States Department of Commerce, Washington, DC, 1972.
  • 2Breiman, L.: Probability, Addison-Wesley, Reading, Mass, 1968.
  • 3Cai, J., Gerber, H. D., Yang, H. L.: Optimal dividends in an Ornstein-Dhlenbeck type model with credit and debit interest. N. Am. Actuar. J., 10(2),94-119 (2006).
  • 4Chiu, S. N., Yin, C. C.: On occupation times for a risk process with reserve-dependent premium. Stochastic models, 18, 245-255 (2002).
  • 5Dickson, D. C. M., Dos Reis, A. D. E.: On the distribution of the duration of negative surplus. Scand. Actuar. J., 2, 148-164 (1996).
  • 6Dos Reis, A. D. E.: How long is the surplus below zero? Insurance: Math. Econ., 12, 23-38 (1993).
  • 7Fang, Y., Wu, R.: Optimal dividends in the Brownian motion risk model with interest. J. Comput. Appl. Math., 229(1), 154-151 (2009).
  • 8Gerber, H. D.: When does the surplus reach a given target? Insurance: Math. Econ., 10, 51-59 (1990).
  • 9He, J. M., Wu, R., Zhang, H. Y.: Total duration of negative surplus for the risk model with debit interest. Statist. Probab. Lett., 15, 1320-1326 (2009).
  • 10Kolkovska, E. T., Lopez-Mimbela, J. A., Morales, J. V.: Occupation measure and local time of classical risk process. Insurance: Math. Econ., 37, 573-584 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部