摘要
A proper coloring of a graphG is acyclic if G contains no 2-colored cycle.A graph G is acyclically L-list colorable if for a given list assignment L={L(v):v∈V(G)},there exists a proper acyclic coloringφof G such thatφ(v)∈L(v)for all v∈V(G).If G is acyclically L-list colorable for any list assignment L with|L(v)|≥k for all v∈V(G),then G is acyclically k-choosable.In this article,we prove that every toroidal graph is acyclically 8-choosable.
A proper coloring of a graphG is acyclic if G contains no 2-colored cycle.A graph G is acyclically L-list colorable if for a given list assignment L={L(v):v∈V(G)},there exists a proper acyclic coloringφof G such thatφ(v)∈L(v)for all v∈V(G).If G is acyclically L-list colorable for any list assignment L with|L(v)|≥k for all v∈V(G),then G is acyclically k-choosable.In this article,we prove that every toroidal graph is acyclically 8-choosable.
基金
supported by National Natural Science Foundation of China(Grant No.11001055)
supported by National Natural Science Foundation of China(Grant No.60672030)
Natural Science Foundation of Fujian Province(Grant Nos.2010J05004 and 2011J06001)