期刊文献+

Every Toroidal Graph Is Acyclically 8-Choosable 被引量:3

Every Toroidal Graph Is Acyclically 8-Choosable
原文传递
导出
摘要 A proper coloring of a graphG is acyclic if G contains no 2-colored cycle.A graph G is acyclically L-list colorable if for a given list assignment L={L(v):v∈V(G)},there exists a proper acyclic coloringφof G such thatφ(v)∈L(v)for all v∈V(G).If G is acyclically L-list colorable for any list assignment L with|L(v)|≥k for all v∈V(G),then G is acyclically k-choosable.In this article,we prove that every toroidal graph is acyclically 8-choosable. A proper coloring of a graphG is acyclic if G contains no 2-colored cycle.A graph G is acyclically L-list colorable if for a given list assignment L={L(v):v∈V(G)},there exists a proper acyclic coloringφof G such thatφ(v)∈L(v)for all v∈V(G).If G is acyclically L-list colorable for any list assignment L with|L(v)|≥k for all v∈V(G),then G is acyclically k-choosable.In this article,we prove that every toroidal graph is acyclically 8-choosable.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第2期343-352,共10页 数学学报(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11001055) supported by National Natural Science Foundation of China(Grant No.60672030) Natural Science Foundation of Fujian Province(Grant Nos.2010J05004 and 2011J06001)
关键词 Acyclic coloring CHOOSABILITY toroidal graph Acyclic coloring, choosability, toroidal graph
  • 相关文献

参考文献15

  • 1Albertson, M. O., Berman, D. M.: The acyclic chromatic number. Congr. Numer., 17, 51-69 (1976).
  • 2Bohme, T., Mohar, B., Stiebiz, M.: Dirac's map-color theorem for choosability. J. Graph Theory, 32, 327-339 (1999).
  • 3Borodin, O. V.: On acyclic coloring of planar graphs. Discrete Math., 25, 211-236 (1979).
  • 4Borodin, O. V., Fon-Der Flaass, D. G., Kostochka, A. V., et al.: Acyclic list 7-coloring of planar graphs. J. Graph Theory, 40, 83-90 (2002).
  • 5Borodin, O. V., Kostochka, A. V., Raspaud, A., et al.: Acyclic colouring of I-planar graphs. Discrete Appl. Math., 114, 29-41 (2001).
  • 6Erdos, P., Rubin, A. L., Taylor, H.: Choosability in graphs. Congr. Numer., 26, 125-157 (1979).
  • 7Grunbaum, B.: Acyclic colorings of planar graphs. Israel J. Math., 14, 390-408 (1973).
  • 8Kostochka, A.V., Mel'nikov, L. S.: Note to the paper of Grfinbaum on acyclic colorings. Discrete Math., 14, 403-406 (1976).
  • 9Montassier, M., Ochem, P., Raspaud, A.: On the acyclic choosability of graphs. J. Graph Theory, 51, 281-300 (2006).
  • 10Montassier, M., Raspaud, A., Wang, W.: Acyclic 4-choosability of planar graphs without cycles of specific lengths. Algorithms Combin., 26, 473-491 (2006).

同被引文献11

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部