期刊文献+

随机派系生长网络模型及其传输能力研究 被引量:2

Random clique evolving network model and their communicability
原文传递
导出
摘要 本文提出一种基于随机选择的派系生长网络模型,该网络从一个a-派系模体开始,每个时间步t,在网络中随机选择m个节点构建一个新的a-派系,由此网络生长演化.模拟研究表明:该网络具有高的聚类系数和短的平均路径长度是一个小世界网络,并且比值ρ=m/a越小,聚类系数越大.而度分布则呈指数分布,这些特征与许多交通系统的复杂网络的实证研究结果相符.该网络的聚类系数与节点度呈幂律变化,显示网络具有模块化层次结构的特征,这一特征与近年来人们研究的大多数复杂网络具有模块化层次结构特征的实证研究结果相符.我们还研究了该网络的传输能力,研究表明该网络的传输能力随着比值ρ=m/a的减小而增大.这些研究结果对城市公共交通网络的构建具有一定的指导意义. We introduce a notion of random clique evolving network, this network start from a complete subgraph of a-clique, where a is the size of the clique. In every time step T, m nodes are chosen from this network randomly, and forming a new complete subgraph of a-clique. In this way, this network grows in time steps. The numerical investigation shows that the cumulative degree distribution of this network takes an exponential function, which is the property of the homogeneous networks, and the clustering coefficient of this network is larger than that of the ER network. However, the characteristic path length of this network is the similar to that of the ER network, so this network shows the behaviors of small-world networks. Subsequent study shows that this network exhibits hierarchical modular structure for the clustering spectrum vs. k takes power-law. These results are in good agreement with the empirical results on many real-world complex networks, such as urban bus translation network or urban subway network, our model can explain the evolutionary procedure of these spatial networks. What's more, we present a numerical investigation on the communicability of our model by the Estrada index EE(G), the Estrada index EE(G) of this network increases with decreasing the rata m/a at the same size N and the same average degree 〈k〉, The communicability of the urban public translation networks is very important, our results have urban bus translation network and urban subway network. a certain guiding significance for the construction of
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2014年第3期299-304,共6页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(批准号:11274102) 理论物理国家重点实验室开放式课题(编号:Y3KF321CJ1)资助项目
关键词 复杂网络 派系 层次结构 传输能力 delay complex networks, clique, hierarchical structure, communicability
  • 相关文献

参考文献21

  • 1Watts D J, Strogatz S H. Collective dynamics of "small-world" networks. Nature, 1998, 393: 440-442.
  • 2Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509-512.
  • 3Albert R, Barabási A L. Statistical mechanics of complex networks. Rev Mod Phys, 2002, 74: 47-97.
  • 4Newman M E J. The structure and function of complex networks. SIAM Rev, 2003, 45: 167-256.
  • 5Boccaletti S, Latora V, Moreno Y, et al. Complex networks: Structure and dynamics. Phys Rep, 2006, 424: 175-308.
  • 6Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: Simple building blocks of complex networks. Science, 2002, 298: 824-827.
  • 7Milo R, Itzkovitz S, Kashtan N, et al. Superfaimilies organization of modularity in metabolic networks. Science, 2004, 303: 1538-1542.
  • 8Song C, Havlim S, Makse H A. Self-similarity of complex networks. Nature, 2005, 433: 392-395.
  • 9Palla G, Derenyi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435: 814-818.
  • 10Xiao W K, Ren J, Qi F, et al. Empirical study on clique-degree distribution of networks. Phys Rev E, 2007, 76: 037102.

二级参考文献1

共引文献18

同被引文献32

  • 1Erdts P, R6nyi A. On the evolution of random graphs. Publ Math Inst Hung Acad Sci, 1960, 5:17-61.
  • 2Albert R, Barabisi A L. Statistical mechanics of complex networks. Rev Mod Phys, 2004, 74:47-97.
  • 3Barabtsi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286:509-512.
  • 4Watts D J, Strogatz S H. Collective dynamics of "small-world" networks. Nature, 1998, 393:440-442.
  • 5Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: Simple building blocks of complex networks. Science, 2002, 298:824-827.
  • 6Palla G, Der6nyi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435:814-818.
  • 7Der6nyi I, Palla G, Vicsek T. Clique percolation in Random networks. Phys Rev Lett, 2005, 94:160202.
  • 8Takemoto K, Oosawa C. Evolving networks by merging cliques. Phys Rev E, 2005, 72:046116.
  • 9Clauset A, Moore C, Newman M E J. Hierarchical structure and the prediction of missing links in networks. Nature, 2008, 453:98-101.
  • 10Newman M E J. Random graphs with clustering. Phys Rev Lett, 2009, 103:058701.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部