期刊文献+

径向基函数配点法分析三维功能梯度材料板的静力和动力问题 被引量:4

Radial basis collocation method for the static and dynamic problems of three dimensional functionally graded plate
下载PDF
导出
摘要 传统配点法在求解动力学问题时会存在误差随时间累积的问题,而无网格径向基函数配点法在全域内采用具有无限连续性的径向基函数作为近似函数,结合配点法构建方程,通过最小二乘法进行求解。无网格径向基函数配点法不仅在数值计算过程中不需要任何网格,是真正的无网格法,而且易于离散,精度高,不需要积分,计算效率高;径向基函数的近似函数仅与距中心点的距离有关,非常适宜于求解三维问题。对于这种方法,本文先离散空间域,然后再离散时间域,并在每一时间步内施加边界条件,来分析三维功能梯度材料板的静力和动力问题,据此可解决传统配点方法在求解动力问题时误差随时间累积的问题。数值分析表明,材料性能呈梯度分布会导致其力学性能在梯度方向呈现非线性变化,不同的梯度分布模式会导致力学性能非线性变化的幅度不同。 Meshfree radial basis collocation method (RBCM)is introduced to study the static and dynamic problems of the three dimensional (3D)functionally graded plate.Radial basis functions which possess infinite continuity are employed to be the ap-proximation,collocation method is utilized for discretization,and least squares approach is adopted to solve the discretized equa-tions .No mesh will be required in the discretization and resolution and therefore RBCM is a truly meshfree method.Discretization scheme of RBCM is quite simple and high accuracy can be obtained.Radial basis approximation only depends on the distance from the center which makes RBF a good candidate to solve 3D problems.Conventional collocation method introduces error accumula-tion on the boundaries.In this paper,the spatial domain is discretized first,and then temporal domain is discretized.Boundary conditions are imposed in each time step.Therefore,error accumulation on the boundaries can be overcome.Numerical simula-tions demonstrate that graded distribution of material properties will lead to nonlinear variation of the mechanical properties.The magnitude of the nonlinear variation will be different for different graded distributions.
出处 《中国科技论文》 CAS 北大核心 2014年第2期201-206,共6页 China Sciencepaper
基金 国家自然科学基金资助项目(11202150) 高等学校博士学科点专项科研基金资助项目(20100072110018) 上海市重点学科建设项目(B302)
关键词 径向基函数 配点法 功能梯度材料 静力分析 动力分析 radial basis functions collocation method functionally graded materials static analysis dynamic analysis
  • 相关文献

参考文献20

  • 1Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. Int J Numer Methods Eng, 1994, 37(2) : 229-256.
  • 2Ferreira A J M, Batra R C, Roque C M C, et al. Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method f-J]. Compos Struct, 2005, 69(4): 449-457.
  • 3Roque C M C, Ferreira A J M, Jorge R M N. A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory [-J. J Sound Vib, 2007, 300(3/5): 1048-1070.
  • 4Gilhooley D F, Xiao J R, Batra R C, et al. Two-dimen- sional stress analysis of functionally graded solids using the MLPG method with radial basis functions [J]. Comput Mater Sci, 2008, 41(4): 467-481.
  • 5Wang Hui, Qin Qinghua. Meshless approach for ther- mo-mechanical analysis of functionally graded materials [J]. Eng Anal Boundary Elem, 2008, 32(9): 704-712.
  • 6Chen X L, Liew K M. Buckling of rectangular function- ally graded material plates subjected to nonlinearly dis- tributed in-plane edge loads [J]. Smart Mater Struct, 2004, 13(6): 1430-1437.
  • 7龙述尧,刘凯远,李光耀.功能梯度材料中的无网格局部径向点插值法[J].湖南大学学报(自然科学版),2007,34(3):41-44. 被引量:5
  • 8Dai K Y, Liu G R, Lim K M, et al. A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates [J]. Comput Mech,2004, 34(3): 213-223.
  • 9Wu C P, Yang S W. RMVT based meshless collocation and element-free Galerkin methods for the approximate 3D analysis of muhilayered composite and FGM circular hollow cylinders [J]. Compos Part B, 2011, 42(6). 1683-1700.
  • 10Mojdhi A R, Darvizeh A, Basti A, et al. Three dimen- sional static and dynamic analysis of thick functionally graded plates by the meshless local Prtrov-Garlerkin (MLPG) method [J- Eng Anal Boundary Elem, 2011, 35(11): 1168 1180.

二级参考文献40

  • 1熊渊博,龙述尧.用局部Petrov-Galerkin法分析薄板自由振动[J].力学季刊,2004,25(4):577-582. 被引量:6
  • 2熊渊博,龙述尧.局部彼得洛夫-伽辽金法分析各向异性板屈曲[J].力学与实践,2005,27(2):50-53. 被引量:6
  • 3王寿梅,刘智勇.剪切锁闭的本质及解除方法[J].航空学报,1989,10(1). 被引量:3
  • 4ATLURI S N,ZHU T L.A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics[J].Computational Mechanics,1998,22(2):117-127.
  • 5ATLURI S N,SHEN S P.The meshless local Petrov-Galerkin (MLPG) method:a simple & less costly alternative to the finite element and boundary element methods[J].Computer Modeling in Engineering & Science,2002,3(1):11-51.
  • 6WANG C M,LIU G R.A point interpolation meshless method for elastoplastic problems:Proc 1st Int Conf on Structural Stability and Dynamics,December 7-9,Taipei[C].Taipei,2000:703-708.
  • 7RAO B N,RAHMAN S.Mesh-free analysis of cracks in isotropic functionally graded materials[J].Engineering Fracture Mechanics,2003,70:1-27.
  • 8GOLGOLD R A,CHEN C S,BOWMAN H.Some recent results and proposals for the uses of radial basis functions in the BEM[J].Eng Anal Boundary Elements,1999,23:285-296.
  • 9Atluri T, Zhu T. A new meshless local Petrov- Galerkin (MLPG) approach in computational mechanics [J]. Computational Mechanics 1998, 22: 117-127.
  • 10Liu G R,Gu Y T. Meshless local Pertrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches [J]. Comput.Mech,2000,26(6):536-546.

共引文献13

同被引文献48

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部