期刊文献+

CuO和CuS量子点修饰单晶TiO_2纳米棒阵列及光电转化性能表征 被引量:1

CuO and CuS quantum dot sensitized single-crystal TiO_2 nanorod arrays and their photoelectrical performance
下载PDF
导出
摘要 通过浸渍沉积法,对TiO2纳米棒阵列进行了CuO和CuS量子点修饰。通过场发射扫描电镜可以清楚观察到量子点均匀分散于TiO2纳米棒表面,粒子尺寸随反应物中Cu2+的浓度增加而增大,且CuS比CuO尺寸大,颗粒间团聚严重。修饰前后TiO2的晶相组成没有发生明显变化,均为正方金红石相,含铜量子点的结晶相也未出现。在模拟太阳光辐射下,少量的CuO和CuS量子点沉积都能显著提高复合体系的光电响应,最高短路光电流密度分别约为空白TiO2的5倍和3.5倍,说明表面量子点敏化提高了光致电荷分离与转移效率。过量的CuO和CuS沉积会导致粒子尺寸的增大和团聚,不利于和TiO2之间的电荷转移,光电流随之降低。另外,CuO敏化TiO2的光电转化性能和稳定性都要优于CuS,推测这是由于CuS粒子大,易团聚,并且在光照下容易得电子形成更加稳定的Cu2S所致。 The decoration of TiO2 nanorod arrays with CuO and CuS quantum dots (QDs)was carried out through the dipping and deposition process.CuO and CuS QDs uniformly dispersed on the surface of TiO2 nanorods,and the particle size increased with the increase in concentration of Cu2+ in reactants.In addition,CuS particles were much larger and more aggregated than CuO nanoparticles.The crystallinity of TiO2 was tetragonal rutile phase,and had no obvious changes before and after the QD sensiti-zation,and no typical peaks of the QDs containing Cu(II)could be observed.Under the irradiation of solar simulator,the photo-current response of the composite system can be improved by the deposition of CuO or CuS QDs and the highest photocurrent den-sity was around 5 or 3 .5 times that of the TiO2 ,respectively,indicating that the photoinduced charge separation and transfer were certainly promoted by the introduction of these cupric QDs.The deposition of too high concentraition QDs could result in o-ver growth and aggregation of the grains,which may hinder the charge transfer between the QDs and TiO2 ,thus reducing the photocurrent.Furthermore,the enhanced photoelectrical activity and stability of TiO2 sensitized by CuO was always higher than that of CuS,which can be due to large and aggregated CuS QDs and the production of more stable Cu2 S resulted from capturing the photogenerated electrons under the illumination.
出处 《中国科技论文》 CAS 北大核心 2014年第2期218-223,共6页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20123719110001) 中国博士后科学基金特别资助项目(2013T60652) 中国博士后科学基金资助项目(2012M521297) 山东省自然科学杰出青年基金资助项目(JQ201118) 山东省泰山学者建设工程资助项目(tshw20091005) 山东省博士后创新项目专项资金资助项目(201203028) 青岛市国际科技合作计划资助项目(12-1-4-136-hz)
关键词 太阳能电池 二氧化钛 量子点敏化 氧化铜 硫化铜 solar cells titanium dioxide quantum dot sensitization copper oxide copper sulfide
  • 相关文献

参考文献19

  • 1Jia Yi, Cao Anyuan, Bai Xi, et al. Achieving high effi- ciency silicon-carbon nanotube heterojunction solar cells by acid doping ]J2. Nano Lett, 2011, 11 (5): 1901-1905.
  • 2余航,丁夕然,白帆,李美成.形貌可控银纳米粒子制备及其在太阳能电池中的应用[J].中国科技论文,2012,7(2):135-141. 被引量:7
  • 3彭涛,周曦,李远志.可见光响应纳米TiO_2光催化材料研究进展[J].中国科技论文在线,2009,4(4):302-307. 被引量:8
  • 4徐彬,李娜,朱礼,张伟德.纳米结构TiO_2/γ-Al_2O_3复合粒子的制备及其光催化降解苯酚的研究[J].中国科技论文在线,2010,5(12):929-933. 被引量:7
  • 5Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensi- tized solar cells with cobalt (II/III)-based redox electro- lyte exceed 12 percent efficiency [J]. Science, 2011, 334(6056) : 629-634.
  • 6Tang J, Kemp K W, Hoogland S, et al. Colloidal- quantum-dot photovoltaics using atomic-ligand passiva- tion [-J. Nat Mater, 2011, 10: 765-771.
  • 7Fujii M, Nagasuna K, Fujishima M, et al. Photodepo- sition of CdS quantum dots on TiO2 : preparation, char- acterization, and reaction mechanism J. J Phys Chem C, 2009, 113(38): 16711 16716.
  • 8Hagfeldt A, Gr/itzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chem Rev, 1995, 95 (1) : 49-68.
  • 9Sambur J B, Riha S C, Choi D, et al. Influence of sur- face chemistry on the binding and electronic coupling of CdSe quantum dots to single crystal TiO2 surfaces [J- Langmuir, 2010, 26(7): 4839-4847.
  • 10Wang Hua, Bai Yusong, Zhang Hao, et al. CdS quan- tum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes [-J. J Phys Chem C, 2010, 114(39). 16451-16455.

二级参考文献22

  • 1颜鲁婷,司文捷,苗赫濯.纳米TiO_2光催化材料的研究进展[J].材料科学与工程学报,2004,22(5):760-763. 被引量:21
  • 2张宗涛,胡黎明,袁留锁,顾燕芳,朱孟钦,赵斌.高分子保护化学还原法制备纳米银粉[J].贵金属,1995,16(4):45-51. 被引量:21
  • 3王程,龚文琪,雷绍民,郝骞,熊毕华.石英表面自组装二氧化钛光催化材料[J].无机盐工业,2006,38(7):35-38. 被引量:6
  • 4彭子飞,汪国忠,张立德,杨金龙.用银氨配离子还原法制备纳米银[J].材料研究学报,1997,11(1):104-106. 被引量:29
  • 5Yi Xie,Qingnan Zhao,Xiu Jian Zhao,Yuanzhi Li. Low Temperature Preparation and Characterization of N-doped and N-S-codoped TiO2 by Sol–gel Route[J] 2007,Catalysis Letters(3-4):231~237
  • 6GB/T 14506.8-1993.硅酸盐岩石化学分析方法 二氧化钛的测定[S],1993.
  • 7M.J. Alam,D.C. Cameron.Preparation and Characterization of TiO2 Thin Films by Sol-Gel Method[J]. Journal of Sol - Gel Science and Technology . 2002 (2)
  • 8Y. Djaoued,Simona Badilescu,P.V. Ashrit,D. Bersani,P.P. Lottici,R. Brüning.Low Temperature Sol-Gel Preparation of Nanocrystalline TiO2 Thin Films[J]. Journal of Sol - Gel Science and Technology . 2002 (3)
  • 9H. Shiho,N. Kawahashi.Titanium compounds as coatings on polystyrene latices and as hollow spheres[J]. Colloid & Polymer Science . 2000 (3)
  • 10Chakarvarti S K,Vetter J.Template synthesis—a membrane based technology for generation of nano-/micro materials:a review. Radiation Measurements . 1998

共引文献16

同被引文献60

  • 1KARKAS M D, JOHNSTON E V, VERHO O, et al. Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation [ J ]. Accounts of Chemical Research, 2014, 47(1) : 100-1ll.
  • 2FUJISHIMA A, HONDA K. Electrochemical photocatalysis of water at a semiconductor electrode [ J 1. Nature, 1972, 238: 37-38.
  • 3SANG L X, ZHAO Y X, BURDA C. TiO2 nanoparticles as functional building [ J]. Chemical Reviews, 2014, 114 (19) : 9283-9318.
  • 4JIN Z L, ZHANG X J, LUG X, et al. Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiOE-investigation of different noble metal loading [ J ]. Journal of Molecular Catalysis A: Chemical, 2006, 259 (1/2) : 275-280.
  • 5LI Y X, XIE C F, PENG S Q, et al. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution[ J3- Journal of Molecular Catalysis A: Chemical, 2008, 282(1/2): 117-123.
  • 6PARK J, YI J, TACHIKAWA T, et al. Guanidinium- enhanced production of hydrogen on Nation-coated dye/ TiO2 under visible light[ J]. Phys J Chem Lett, 2010, 1 (9) : 1351-1355.
  • 7LI L, DUAN L L, XU Y H, et al. A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2 [ J ]. Chem Commun, 2010, 46 (39) : 7307 -7309.
  • 8PAN L, ZOU J J, ZHANG X W, et al. Water-mediated promotion of dye sensitization of TiO2 under visible light [J]. JAmChem Soc, 2011, 133(26): 10000-10002.
  • 9KIM M R, MA D L. Quantum-dot-based solar cells:recent advances, strategies, and challenges [ J ]. J Phys Chem Lett, 2015, 6( 1 ) : 85-99.
  • 10MAKAROV N S, MCDANIEL H, FUKE N, et al. Photocharging artifacts in measurements of electron transfer in quantum-dot-sensitized mesoporoustitania films [J]. J Phys Chem Lett, 2014, 5(1): 111-118.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部