期刊文献+

正则化框架下半监督本体算法 被引量:7

Semi-supervised Ontology Algorithm in Regularization Setting
下载PDF
导出
摘要 提出正则化框架下的半监督本体算法,将未标记数据的相关信息充分融入到计算模型中.同时,通过将数据嵌入到特征空间,利用特征表示从理论上得到特征空间上的正则化半监督本体学习算法.通过两个实验表明新算法对特定的应用领域具有较高的效率. In this paper ,we pose semi-supervised ontology algorithm under the framework of the regularization such that the information of unlabeled data is fully integrated into the calculation model .At the same time ,the data is embedded in the feature space ,and feature space regularization semi-supervised ontology learning algorithm is given via the feature representation theory .Two experiments show that the new algorithm for specific applications with high efficiency .
出处 《微电子学与计算机》 CSCD 北大核心 2014年第3期126-129,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(60903131) 教育部科学技术研究重点项目(210210) 江苏省高校自然科学研究项目资助(10KJD52002)
关键词 本体 相似度 本体映射 再生核希尔伯特空间 收缩系数 ontology similarity ontology mapping RK HS shrinkage factor
  • 相关文献

参考文献9

  • 1高炜,梁立.基于超图正则化模型的本体概念相似度计算[J].微电子学与计算机,2011,28(5):15-17. 被引量:16
  • 2高炜,朱林立,梁立.基于图正则化模型的本体映射算法[J].西南大学学报(自然科学版),2012,34(3):118-121. 被引量:33
  • 3高炜,周定轩.与一般相似度函数相关的谱聚类的收敛性[J].中国科学:数学,2012,42(10):985-994. 被引量:17
  • 4Felipe C, Zhou D. Learning theory: an approximation theory viewpoint[M]. England Cambridge University Press, 2007.
  • 5Zhou D, Bousquet O, Lal T,et al. Learning with local and global consistency[C]//NIPS. Is. 1. ]: IEEE,2003: 321-328.
  • 6Zhu X, Kandola J, Ghahramani Z, et al. Nonparamet- ric transforms of graph kernels for semi-supervised learning[J]. Advances in Nearal Informantion Proceesi- ng Systems, 2005 (17) .. 1641-1648.
  • 7Caponnetto A, Yao Y. Cross validation based adapta- tion for regularization operators in learning theory[J]. Anal Appl, 2010(8) .. 161-183.
  • 8Gene Ontcelogy website. Grene Ontcelogy Database [EB/OL]. [2013-01-02]. http, //www. geneontolo- gy. org.
  • 9Craswell N, Hawking D. Overview of the TREC 2003 web track[C]//Proceedings of the Twelfth Text Re- trieval Conference. Gaithersburg, Maryland: NIST Special Publication, 2003 .. 78-92.

二级参考文献36

  • 1Zhou D, Huang J, SchOlkopf B. Beyond pairwise classification and clustering using hypergraphs[P]. Canada.. University of Waterloo, 2005.
  • 2Zhou Dengyong, Huang Jiayuan, Bernhard Scholkopf Learning with Hypergraphs: Clustering, Classification, and Embedding[C]// Proceedings of 20th Annual Conference on Neural Information Processing SysterrLs, 2.006, Vancouver / Whistler, Canada: IEEE 2006 : 1601-1608.
  • 3Liang Sun, Shuiwang Ji, Jieping Ye. Hypergraph spectral learning for multi--label classification[C]// Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. Las Vegas, Nevada, USA: ACM, 2008:668--676.
  • 4Chen Gang, Zhang Jianwen, Wang Fei, et al. Efficient multi-label classification with hypergraph regulariza tion[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL USA.. IEEE, 2009 (9):1658--1665.
  • 5Sameer Agarwal, Kristin Branson, Serge Belongie. Higher order learning with graphs[C]// Proceedings of the 23rd International conference on Machine Learning, Pittsburgh, PA: ICML, 2006: 17-24.
  • 6Zhou Dengyong, Huang Jiayuan, Bernhard Scholkopf. Learning from Labeled and Unlabeled Data on a Directed Graph[C]//Proceedings of the 22nd International Con ference on Machine Learning, Bonn, Germany.. ICMI., 2005 : 1041- 1048.
  • 7Isaac Pesenson. Varialional Splines and Paley-wiener Spaces on Combinatorial Graphs[J]. Constr Approx, 2009(29) : 1-21.
  • 8Craswell N, Hawking D. Overview of the TREC 2003 web track[C]// Text Retrieval Conference (TREC). 2003 Proceedings. [s. l.].-TREC,2003.
  • 9MORK P,BERNSTEIN P.Adapting a Generic Match Algorithm to Align Ontologies of Human Anatomy[C]//20thInternational Conf on Data Engineering.New York:IEEE Computer Society Press,2004:787-790.
  • 10LAMBRIX P,EDBERG A.Evaluation of Ontology Tools in Bioinformatics[C]//Paci Symposium on Biocomputing.New York:IEEE Computer Society Press,2003:529-600.

共引文献36

同被引文献48

  • 1MORK P, BERNSTEIN P. Adapting a generic match algorithm to align ontologies of human anatomy[C]//Proceedings of the 20th International Conference on Data Engineering. Los Alamitos, CA: IEEEComputer Society, 2004: 787-790.
  • 2FONSECA F, EGENHOFER M, DAVIS C, et al. Semantic granularity in ontology-driven geographic information systems [J].AMAI Annals of Mathematics and Artificial Intelligence, 2002, 36(1-2): 121-151.
  • 3BOUZEGHOUB A, ELBYED A. Ontology mapping for web-based educational systems interoperability[J]. Interoperability in Business Information Systems, 2006, 1(1): 73-84.
  • 4MICCHELLI C, PONTIL M. Learning the kernel function via regularization[J]. Journal of Machine Learning Research, 2005, 6: 1099-1125.
  • 5ARGYIOU A, MICCHELLI C, PONTIL M. Learning convex combinations of continuously parameterized basic kernels [C]//Prceedings of the 18th Annual Conference on Learning Theory. Bertinoro: Springer, 2005: 338-352.
  • 6CUCKER F, ZHOU D. Learning Theory: An Approximation Theory Viewpoint[M]. Cambridge: Cambridge University Press, 2007: 1-40.
  • 7CAPONNETTO A, YAO Y. Cross validation based adaptation for regularization operators in learning theory[J]. AnalAppl, 2010, 8: 161-183.
  • 8CRASWELL N, HAWKING D. Overview of the TREC 2003 web track[C]//Proceedings of the 12th Text Retrieval Conference. Gaithersburg, Maryland : NIST Special Publication, 2003: 78-92.
  • 9HUANG X, XU T, GAO W, et al. Ontology similarity measure and ontology mapping via fast ranking method [ J ]. International Journal of Applied Physics and Mathematics, 2011, 1 ( 1 ) : 54-59.
  • 10BORWEIN J M, LEWIS A S. Convex analysis and nonlinear optimization:theory and examplesEM:. Publisher: Springer, 2006,50-60.

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部