期刊文献+

基于瑞利-里兹法的岩土三棱柱堆积体的基底应力分布的研究 被引量:5

Study of stress distribution on base of geotechnical triangular prism by Rayleigh-Ritz method
下载PDF
导出
摘要 对岩土三棱柱堆积体的基底应力分布进行了研究,在基底应力的理论解难以求得的情形下,基于瑞利-里兹法求解出基底应力分布的近似解,并具体计算且对比了不同坡比、泊松比、基底边界条件下基底应力分布的变化,得出如下结论:基底法向应力存在应力凹陷现象,坡度越陡,应力凹陷程度越大,底边有约束时应力凹陷程度更明显;泊松比对基底法向应力的分布几乎无影响,泊松比主要影响基底切向应力分布的形态,且泊松比越大,基底切向应力值越大;坡比改变基底切向应力的最大值及其所处位置,坡比越大,基底切向应力值越大,且基底切向应力最大值距离基底中心越远。 The basal stress of geotechnical triangular prism is studied. While it is impossible to get the analytical solution of basal stress distribution of geotechnical triangular prism, the approximate solution of basal stress distribution of geotechnical triangular prism is got with the Rayleigh-Ritz method. By comparison with different solutions of different slope ratios, different Poisson’s ratios, and different boundary conditions at the base, the results are drawn as follows. There is depression of basal normal stress on the base of geotechnical triangular prism. The steeper the slope is, the more depression of basal normal stress is. Much more depression occurs with the boundary condition of constraints on the base. Meanwhile, the value of Poisson’s ratio has little impact on the distribution of basal normal stress. The Poisson’s ratio mainly impacts the distribution of basal shear stress. The larger the value of Poisson’s ratio is, the larger the basal shear stress is. The slope ratio has large influence on the position and value of the maximum basal shear stress. The larger the slope ratio is, the larger the basal shear stress is, and the larger distance between the maximum basal shear stress and center of base is.
出处 《岩土力学》 EI CAS CSCD 北大核心 2014年第3期705-709,共5页 Rock and Soil Mechanics
基金 广西科学研究与技术开发项目(No.桂科金0136019)
关键词 基底应力分布 瑞利-里兹法 应力凹陷 basal stress distribution Rayleigh-Ritz method depression of stress
  • 相关文献

参考文献10

  • 1傅裕寿,张正威.土力学与地基基础深[M].北京:清华大学出版社,2012.
  • 2中交第二公路勘察设计研究院.JTGD30-2004公路路基设计规范[S].北京:人民交通出版社,2004.
  • 3OSTERBERG J O. Influence values for vertical stresses in a semi-infinite mass due to an embankment loading[C]//Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering. London: Butterworths, 1957: 393-394.
  • 4WATSON A. Searching for the sand-pile pressure dip[J]. Science, 1996, 273(5275): 579-580.
  • 5SAVAGE S B. Problems in the statics and dynamics of granular materials[C]//Powders and Grains 97. Rotterdam Balkema, 1997: 185- 194.
  • 6SOKOLOVSKII V V. Statics of granular media[M]. Oxford: Pergamon, 1965.
  • 7BOUCHAUD J P, CATES M E, CLAUDIN P J. Stress distribution in granular media and nonlinear wave equation[J]. Journal de Physique I, 1995, 5(6): 639- 656.
  • 8WITTMER J P, CLAUDIN P, CATES M E, et al. An explanation for the central stress minimum in sand piles[J]. Nature, 1996, 382(6589): 336-338.
  • 9WITTMER J P, CATES M E, CLAUDIN P. Stress propagation and arching in static sand piles [J]. Journal de Physique I, 1997, 7(1): 39-80.
  • 10WITTMER J P, BOUCHAUD J-P, CLAUDIN P. Development of stresses in cohesionless poured sand[J]. Philosophical Transactions of the Royal Society, London 356, 1998, (1747): 2535-2561.

共引文献66

同被引文献34

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部