期刊文献+

陶瓷材料抗长杆弹侵彻阻抗研究 被引量:7

Penetration Resistance of Ceramic Materials Subjected to Projectile's Impact
下载PDF
导出
摘要 为探讨长杆弹侵彻陶瓷靶中的阻抗与侵彻速度关系,基于长杆弹侵彻半无限靶的修正流体动力学模型(Tate模型)和空腔膨胀理论流体动力学模型,结合文献中已知试验数据,求解了氧化铝和氮化铝陶瓷的Tate模型侵彻阻抗R。和空腔膨胀模型侵彻阻抗Rc.结果表明在1500~3500m/s速度范围内,氧化铝陶瓷的Rt随速度的增加而缓慢降低,氮化铝的Rc基本为恒值;在3600~4500m/s速度范围内,氮化铝陶瓷的Rt随速度的增加反而增加,可能是侵彻速率超过裂纹传播最终速率所导致;两种陶瓷的Rc都随速度的增加而减小,接近流体动力学极限时Rc值非常小,表明该模型不适合于超高速侵彻.采用平均阻抗计算的侵彻深度结果表明平均阻抗可以用于侵彻深度计算. Using the experimental data in literature, the penetration resistances Rt and Rc of ceramic materials are calculated accurately based on the Tate's model and the hydrodynamic model of spherical cavity expansion theory separately. The results show that Rt of alumina ceramic decreases slightly with the increased impact velocity and Rt of aluminum nitride ceramic is approximately a constant value from 1 500 m/s to 3 500 m/s, while Rt of aluminum nitride ceramic increases with the increased impact velocity from 3 600 m/s to 4 500 m/s for the penetration velocity above the limiting velocity for the growth of cracks. Rc of two kinds ceramic decrease with the increased impact velocity and approximate to zero at hydrodynamics limiting value. It can be concluded that the hydrodynamic model of spherical cavity expansion cannot be applied in the hypervelocity penetrating condition. The comparisons between the computational penetration depths acquired with the average resistance and the experimental results show that it has satisfactory accuracy with the average resistance.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第1期1-4,44,共5页 Transactions of Beijing Institute of Technology
基金 国家部委基础科研项目(C1520110001)
关键词 侵彻阻抗 Tate模型 空腔膨胀理论 陶瓷 penetration resistance Wate mode cavity expansion theory ceramic
  • 相关文献

参考文献2

二级参考文献21

  • 1张连生,黄风雷.抗弹陶瓷材料抗弹性能的理论表征[J].北京理工大学学报,2005,25(7):651-654. 被引量:7
  • 2朱艳丽.陶瓷装甲对EFP的抗弹实验研究[D].北京理工大学.2005.
  • 3Yaziv D. Rosenberg G, Partom Y. Differential ballistic efficiency of appliqué armor[A]. Proc 9th Int Symp Ballistics[C]. Shrivenham:[s.n.], 1986. 315-319.
  • 4Bless S J, Rozenberg Z, Yoon B. Hypervelocity penetration of ceramics[J]. Int J Impact Engng, 1987(5):165-171.
  • 5Rosenberg Z, Dekel E, Hohler V, et al. Penetration of tungsten-alloy rods composite ceramic targets: Experiments and 2-D simulations[A]. Shock compression of condensed matter-1997[C].[s.l.]:Edited by Schmidt/Dandekar/Forbes, 1997. 917-920.
  • 6Rozenberg Z, Yeshurun Y. The relation between ballistic efficiency and compressive strength of ceramic tiles[J]. Int J Impact Engng, 1988,7:357-362.
  • 7Alekseevskii V P. Penetration of a rod into a target at high velocity[J]. Combustion, Explosion and Shock Waves, 1966(2):63-66.
  • 8Tate A. A theory for the deceleration of long rods after impacts[J]. J Mech Phys Solids, 1967,15:387-399.
  • 9Hill R. The mathematical theory of plasticity[M]. London: Oxford University Press, 1950.
  • 10Satapathy S, Bless S. Calculation of penetration resistance of brittle materials using spherical cavity expansion analysis[J]. Mechanics of Materials, 1996,23:323-330.

共引文献16

同被引文献56

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部